diagonal loading
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 36 (7) ◽  
pp. 908-913
Author(s):  
Bin Yang ◽  
Wenxing Li ◽  
Yuanyuan Li ◽  
Yunlong Mao

Diagonal loading technology is widely used in array antenna beamforming because of its simple method, low computational complexity and the ability to improve the robustness of beamformer. On this basis, this paper proposes a robust adaptive beamforming method based on automatic variable loading technology. The automatic variable loading matrix (AVLM) of the method is composed of two parts. The non-uniform loading matrix dominants when the input signal-to-noise ratio (SNR) is small, effectively control the influence of noise disturbance without affecting the ability of array antenna to suppress interference. The variable diagonal loading matrix dominants when the input SNR is high to improve the output performance of array antenna. Simulated results show that compared to other methods, the proposed method has better output performance for both low and high input SNR cases.


2021 ◽  
Author(s):  
Imteaz Rahaman ◽  
Md. Farhamdur Reza ◽  
Md. Selim Hossain ◽  
Pallab Kumar Sarkar ◽  
Md. Mamunur Rashid ◽  
...  

Abstract In this research, a novel antenna array named Linearly arranged Concentric Circular Antenna Array (LCCAA) is proposed concerning lower beamwidth, lower sidelobe level, sharp ability to detect the false signal, and impressive SINR performance. The performance of the proposed LCCAA beamformer is compared with geometrically identical existing beamformers using the conventional technique where the LCCAA beamformer shows the lowest beamwidth and sidelobe level(SLL) of 12.50°and -15.17 dB in equal element accordingly. However, the performance gets degraded due to looking direction error, and robust techniques- fixed diagonal loading (FDL), optimal diagonal loading (ODL), and variable diagonal loading (VDL) are applied to all the potential arrays to minimize this problem. Furthermore, the LCCAA beamformer is further simulated to reduce the sidelobe applying tapering techniques where the hamming window shows the best performance having 17.097 dB less sidelobe level compared to the uniform window. The proposed structure is also analyzed under a robust tapered (VDL-hamming) method which reduces around 69.92 dB and 48.39 dB more sidelobe level compared to conventional and robust techniques. Analyzing all the performances, it is clear that the proposed LCCAA beamformer is superior and provides the best performance with the proposed robust tapered (VDL-hamming) technique.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qingyuan Fang ◽  
Mengzhe Jin ◽  
Weidong Liu ◽  
Yong Han

Sources with large power differences are very common, especially in complex electromagnetic environments. Classical DOA estimation methods suffer from performance degradation in terms of resolution when dealing with sources that have large power differences. In this paper, we propose an improved DOA algorithm to increase the resolution performance in resolving such sources. The proposed method takes advantage of diagonal loading and demonstrates that the invariant property of noise subspace still holds after diagonal loading is performed. We also find that the Cramer–Rao bound of the weak source can be affected by the power of the strong source, and this has not been noted before. The Cramer–Rao bound of the weak source deteriorates as the power of the strong source increases. Numerical results indicate that the improved algorithm increases the probability of resolution while maintaining the estimation accuracy and computational complexity.


2020 ◽  
Vol 17 (9) ◽  
pp. 1523-1527
Author(s):  
Zhaoyi Wang ◽  
Zhongtao Luo ◽  
Zishu He ◽  
Shengnan Shi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document