medication exposure
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 57)

H-INDEX

22
(FIVE YEARS 4)

PEDIATRICS ◽  
2021 ◽  
Author(s):  
Rebekah Boyd ◽  
Hannah McMullen ◽  
Halil Beqaj ◽  
David Kalfa

Congenital heart disease (CHD) is the most common congenital abnormality worldwide, affecting 8 to 12 infants per 1000 births globally and causing >40% of prenatal deaths. However, its causes remain mainly unknown, with only up to 15% of CHD cases having a determined genetic cause. Exploring the complex relationship between genetics and environmental exposures is key in understanding the multifactorial nature of the development of CHD. Multiple population-level association studies have been conducted on maternal environmental exposures and their association with CHD, including evaluating the effect of maternal disease, medication exposure, environmental pollution, and tobacco and alcohol use on the incidence of CHD. However, these studies have been done in a siloed manner, with few examining the interplay between multiple environmental exposures. Here, we broadly and qualitatively review the current literature on maternal and paternal prenatal exposures and their association with CHD. We propose using the framework of the emerging field of the exposome, the environmental complement to the genome, to review all internal and external prenatal environmental exposures and identify potentiating or alleviating synergy between exposures. Finally, we propose mechanistic pathways through which susceptibility to development of CHD may be induced via the totality of prenatal environmental exposures, including the interplay between placental and cardiac development and the internal vasculature and placental morphology in early stages of pregnancy.


2021 ◽  
Vol 11 (11) ◽  
pp. 1188
Author(s):  
Jeffrey R. Strawn ◽  
Ethan A. Poweleit ◽  
Jeffrey A. Mills ◽  
Heidi K. Schroeder ◽  
Zoe A. Neptune ◽  
...  

Current pharmacologic treatments for pediatric anxiety disorders (e.g., selective serotonin reuptake inhibitors (SSRIs)) frequently use “one size fits all” dosing strategies based on average responses in clinical trials. However, for some SSRIs, including escitalopram, variation in CYP2C19 activity produces substantial variation in medication exposure (i.e., blood medication concentrations). This raises an important question: would refining current SSRI dosing strategies based on CYP2C19 phenotypes increase response and reduce side effect burden? To answer this question, we designed a randomized, double-blind trial of adolescents 12–17 years of age with generalized, separation, and/or social anxiety disorders (N = 132). Patients are randomized (1:1) to standard escitalopram dosing or dosing based on validated CYP2C19 phenotypes for escitalopram metabolism. Using this approach, we will determine whether pharmacogenetically-guided treatment—compared to standard dosing—produces faster and greater reduction in anxiety symptoms (i.e., response) and improves tolerability (e.g., decreased risk of treatment-related activation and weight gain). Secondarily, we will examine pharmacodynamic variants associated with treatment outcomes, thus enhancing clinicians’ ability to predict response and tolerability. Ultimately, developing a strategy to optimize dosing for individual patients could accelerate response while decreasing side effects—an immediate benefit to patients and their families. ClinicalTrials.gov Identifier: NCT04623099.


Author(s):  
Julie D. Thai ◽  
Sara E. Rostas ◽  
Carmina Erdei ◽  
Simon M. Manning ◽  
Asimenia Angelidou ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Juan R. Bustillo ◽  
Elizabeth G. Mayer ◽  
Joel Upston ◽  
Thomas Jones ◽  
Crystal Garcia ◽  
...  

Proton magnetic resonance spectroscopy (1H-MRS) studies have examined glutamatergic abnormalities in schizophrenia and bipolar-I disorders, mostly in single voxels. Though the critical nodes remain unknown, schizophrenia and bipolar-I involve brain networks with broad abnormalities. To provide insight on the biochemical differences that may underlie these networks, the combined glutamine and glutamate signal (Glx) and other metabolites were examined in patients in early psychosis with whole brain 1H-MRS imaging (1H-MRSI). Data were acquired in young schizophrenia subjects (N = 48), bipolar-I subjects (N = 21) and healthy controls (N = 51). Group contrasts for Glx, as well as for N-acetyl aspartate, choline, myo-inositol and creatine, from all voxels that met spectral quality criteria were analyzed in standardized brain space, followed by cluster-corrected level alpha-value (CCLAV ≤ 0.05) analysis. Schizophrenia subjects had higher Glx in the right middle cingulate gyrus (19 voxels, CCLAV = 0.05) than bipolar-I subjects. Healthy controls had intermediate Glx values, though not significant. Schizophrenia subjects also had higher N-acetyl aspartate (three clusters, left occipital, left frontal, right frontal), choline (two clusters, left and right frontal) and myo-inositol (one cluster, left frontal) than bipolar-I, with healthy controls having intermediate values. These increases were likely accounted for by antipsychotic medication effects in the schizophrenia subgroup for N-acetyl aspartate and choline. Likewise, creatine was increased in two clusters in treated vs. antipsychotic-naïve schizophrenia, supporting a medication effect. Conversely, the increments in Glx in right cingulate were not driven by antipsychotic medication exposure. We conclude that increments in Glx in the cingulate may be critical to the pathophysiology of schizophrenia and are consistent with the NMDA hypo-function model. This model however may be more specific to schizophrenia than to psychosis in general. Postmortem and neuromodulation schizophrenia studies focusing on right cingulate, may provide critical mechanistic and therapeutic advancements, respectively.


Sign in / Sign up

Export Citation Format

Share Document