developmental exposures
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Jill Escher ◽  
Wei Yan ◽  
Emilie F. Rissman ◽  
Hsiao-Lin V. Wang ◽  
Arturo Hernandez ◽  
...  

AbstractInvestigations into the etiology of autism spectrum disorders have been largely confined to two realms: variations in DNA sequence and somatic developmental exposures. Here we suggest a third route—disruption of the germline epigenome induced by exogenous toxicants during a parent’s gamete development. Similar to cases of germline mutation, these molecular perturbations may produce dysregulated transcription of brain-related genes during fetal and early development, resulting in abnormal neurobehavioral phenotypes in offspring. Many types of exposures may have these impacts, and here we discuss examples of anesthetic gases, tobacco components, synthetic steroids, and valproic acid. Alterations in parental germline could help explain some unsolved phenomena of autism, including increased prevalence, missing heritability, skewed sex ratio, and heterogeneity of neurobiology and behavior.


2021 ◽  
Vol 12 (6) ◽  
pp. 1516
Author(s):  
Marisa R Pinson ◽  
Dae D Chung ◽  
Amy M Adams ◽  
Chiara Scopice ◽  
Elizabeth A Payne ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alice Baynes ◽  
Gemma Montagut Pino ◽  
Giang Huong Duong ◽  
Anne E. Lockyer ◽  
Carmel McDougall ◽  
...  

Abstract In vertebrates, the steroidogenesis enzyme 5α-reductase converts testosterone to the more potent androgen 5α-dihydrotestosterone. Homologues of 5α-reductase genes have been identified in molluscs. However, recent findings suggest that vertebrate-type steroid androgens are not utilised in molluscan reproductive development. Genomic searches have revealed that molluscs do not possess many of the steroidogenic enzymes required to make testosterone, nor a nuclear androgen receptor. Consequently, the role of 5α-reductase in molluscs presents a mystery. Here, developmental exposures of Biomphalaria glabrata to selective pharmaceutical 5α-reductase inhibitors elicited a strong, highly reproducible phenotypic response characterised by the development of elongated “banana-shaped” shell morphology. In comparison to untreated snails, the shells are open-coiled and the whorls are unattached. Dutasteride (5α-reductase inhibitor) is approximately 10-times more potent at provoking the banana-shaped shell phenotype than finasteride, paralleling the pharmaceuticals’ efficacy in humans. Other enzyme inhibitors with different modes of action were tested to investigate the specificity of the phenotype. However, only the pharmaceutical 5α-reductase inhibitors provoked the response. Dutasteride elicited the same phenotype in a second gastropod, Physella acuta. In the absence of evidence for de novo androgen steroidogenesis in molluscs, these findings suggest that novel substrates for 5α-reductase exist in gastropods, lending support to the contention that molluscan endocrinology differs from the well-characterised vertebrate endocrine system.


Endocrinology ◽  
2019 ◽  
Vol 160 (7) ◽  
pp. 1613-1630 ◽  
Author(s):  
Kari Neier ◽  
Drew Cheatham ◽  
Leah D Bedrosian ◽  
Brigid E Gregg ◽  
Peter X K Song ◽  
...  

Abstract Developmental exposures to phthalates are suspected to contribute to risk of metabolic syndrome. However, findings from human studies are inconsistent, and long-term metabolic impacts of early-life phthalate and phthalate mixture exposures are not fully understood. Furthermore, most animal studies investigating metabolic impacts of developmental phthalate exposures have focused on diethylhexyl phthalate (DEHP), whereas newer phthalates, such as diisononyl phthalate (DINP), are understudied. We used a longitudinal mouse model to evaluate long-term metabolic impacts of perinatal exposures to three individual phthalates, DEHP, DINP, and dibutyl phthalate (DBP), as well as two mixtures (DEHP+DINP and DEHP+DINP+DBP). Phthalates were administered to pregnant and lactating females through phytoestrogen-free chow at the following exposure levels: 25 mg of DEHP/kg of chow, 25 mg of DBP/kg of chow, and 75 mg of DINP/kg of chow. One male and female per litter (n = 9 to 13 per sex per group) were weaned onto control chow and followed until 10 months of age. They underwent metabolic phenotyping at 2 and 8 months, and adipokines were measured in plasma collected at 10 months. Longitudinally, females perinatally exposed to DEHP only had increased body fat percentage and decreased lean mass percentage, whereas females perinatally exposed to DINP only had impaired glucose tolerance. Perinatal phthalate exposures also modified the relationship between body fat percentage and plasma adipokine levels at 10 months in females. Phthalate-exposed males did not exhibit statistically significant differences in the measured longitudinal metabolic outcomes. Surprisingly, perinatal phthalate mixture exposures were statistically significantly associated with few metabolic effects and were not associated with larger effects than single exposures, revealing complexities in metabolic effects of developmental phthalate mixture exposures.


Sign in / Sign up

Export Citation Format

Share Document