wild wheat
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohd. Kamran Khan ◽  
Anamika Pandey ◽  
Mehmet Hamurcu ◽  
Zuhal Zeynep Avsaroglu ◽  
Merve Ozbek ◽  
...  

Boron (B) is an important micronutrient required for the normal growth and development of plants. However, its excess in the soil causes severe damage to plant tissues, which affects the final yield. Wheat, one of the main staple crops, has been reported to be largely affected by B toxicity stress in arid and semi-arid regions of the world. The prevalence of B toxicity stress can be addressed by utilizing wild wheat genotypes with a variant level of stress tolerance. Wild wheat relatives have been identified as a prominent source of several abiotic stress-tolerant genes. However, Aegilops species in the tertiary gene pool of wheat have not been well exploited as a source of B toxicity tolerance. This study explores the root and shoot growth, proline induction, and extent of lipid peroxidation in 19 Aegilops accessions comprising 6 different species and the B-tolerant check wheat cultivar Bolal 2973 grown under Control (3.1 μM B), toxic (1 mM B), and highly toxic (10 mM B) B stress treatment. B toxicity stress had a more decisive impact on growth parameters as compared to the malondialdehyde (MDA) and proline content. The obtained results suggested that even the genotypes with high shoot B (SB) accumulation can be tolerant to B toxicity stress, and the mechanism of B redistribution in leaves should be studied in detail. It has been proposed that the studied Aegilops accessions can be potentially used for genetically improving the B toxicity-tolerance trait due to a high level of variation in the response toward high B toxicity. Though a number of accessions showed suppression in the root and shoot growth, very few accessions with stress adaptive plasticity to B toxicity stress leading to an improvement of shoot growth parameters could be determined. The two accessions, Aegilops biuncialis accession TGB 026219 and Aegilops columnaris accession TGB 000107, were identified as the potential genotypes with B toxicity stress tolerance and can be utilized for developing a pre-breeding material in B tolerance-based breeding programs.


Author(s):  
Sabah M. Morsy ◽  
Ibrahim S. Elbasyoni ◽  
Ahmed M. Abdallah ◽  
Petter Stephen Baenziger
Keyword(s):  

Author(s):  
Lovenpreet Kaur ◽  
Natasha Sharma ◽  
Monika Garg

Abstract This chapter provides information on the importance of biofortification as a cheap, sustainable and environmentally friendly approach to increase micronutrient contents in plants. The merging of breeding approaches with genetic engineering techniques, such as quantitative trait locus analysis, marker-assisted breeding, gene cloning and gene transformation from wild wheat relatives, in order to develop micronutrient-rich wheat cultivars is also highlighted.


2020 ◽  
Author(s):  
Junmei Hu ◽  
Guilian Xiao ◽  
Peng Jiang ◽  
Yan Zhao ◽  
Guangxu Zhang ◽  
...  

Abstract Background: Wheat processing quality is an important factor in evaluating overall wheat quality, and dough characteristics are important when assessing the processing quality of wheat. As a notable germplasm resource, semi-wild wheat has a key role in the study of wheat processing quality.Results: In this study, four dough rheological characteristics were collected in four environments using a nested association mapping (NAM) population consisting of semi-wild and domesticated wheat varieties to identify quantitative trait loci (QTL) for wheat processing quality. A total of 49 QTL for wheat processing quality were detected, explaining 0.36–10.82% of the phenotypic variation. These QTL were located on all wheat chromosomes except for 2D, 3A, 3D, 6B, 6D and 7D. Compared to previous studies, 29 QTL were newly identified. Four novel QTL, QMlPH-1B.4, QMlPH-3B.4, QWdEm-1B.2 and QWdEm-3B.2, were stably identified in three or more environments, among which QMlPH-3B.4 was a major QTL. Moreover, eight important genetic regions for wheat processing quality were identified on chromosomes 1B, 3B and 4D, which showed pleiotropy for dough characteristics. In addition, out of 49 QTL, 15 favorable alleles came from three semi-wild parents, suggesting that the QTL alleles provided by the semi-wild parent were not utilized in domesticated varieties.Conclusions: The results show that semi-wild wheat varieties can enrich the existing wheat gene pool and provide broader variation resources for wheat genetic research.


2020 ◽  
Author(s):  
Junmei Hu ◽  
Guilian Xiao ◽  
Peng Jiang ◽  
Yan Zhao ◽  
Guangxu Zhang ◽  
...  

Abstract Background: Wheat processing quality is an important factor in evaluating overall wheat quality and dough characteristics are important in assessing the processing quality of wheat. As an important germplasm resource, semi-wild wheat plays an important role in the study of wheat processing quality.Results: In this study, four dough rheological characteristics were therefore collected in four environments using a nested association mapping (NAM) population, consisting of semi-wild and domesticated wheat varieties, which was used to identify quantitative trait loci (QTL) for wheat processing quality. A total of 49 QTL for wheat processing quality were detected, explaining 0.36–10.82% of the phenotypic variation. These QTL were located on all wheat chromosomes except for 2D, 3A, 3D, 6B, 6D and 7D. Compared to previous studies, 29 QTL were newly identified. Four novel QTL, QMlPH-1B.4, QMlPH-3B.4, QWdEm-1B.2 and QWdEm-3B.2, were stably identified in three or more environments, of which QMlPH-3B.4 was a major QTL. Moreover, eight important genetic regions for wheat processing quality were identified on chromosomes 1B, 3B and 4D, which showed pleiotropy for dough characters. In addition, out of 49 QTL, 15 favorable alleles came from three semi-wild parents, suggesting that the QTL alleles provided by the semi-wild parent were unutilized in domesticated varieties.Conclusions: The results show that the semi-wild wheat varieties can enrich the existing wheat gene pool and provide broader variation resources for wheat genetic research.


2020 ◽  
Vol 156 ◽  
pp. 115-124
Author(s):  
Patrizia Rampino ◽  
Mariarosaria De Pascali ◽  
Carla Perrotta ◽  
Mariolina Gullì

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Weilong Guo ◽  
Mingming Xin ◽  
Zihao Wang ◽  
Yingyin Yao ◽  
Zhaorong Hu ◽  
...  

Abstract Tibetan wheat is grown under environmental constraints at high-altitude conditions, but its underlying adaptation mechanism remains unknown. Here, we present a draft genome sequence of a Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) accession Zang1817 and re-sequence 245 wheat accessions, including world-wide wheat landraces, cultivars as well as Tibetan landraces. We demonstrate that high-altitude environments can trigger extensive reshaping of wheat genomes, and also uncover that Tibetan wheat accessions accumulate high-altitude adapted haplotypes of related genes in response to harsh environmental constraints. Moreover, we find that Tibetan semi-wild wheat is a feral form of Tibetan landrace, and identify two associated loci, including a 0.8-Mb deletion region containing Brt1/2 homologs and a genomic region with TaQ-5A gene, responsible for rachis brittleness during the de-domestication episode. Our study provides confident evidence to support the hypothesis that Tibetan semi-wild wheat is de-domesticated from local landraces, in response to high-altitude extremes.


2020 ◽  
Author(s):  
Junmei Hu ◽  
Guilian Xiao ◽  
Peng Jiang ◽  
Yan Zhao ◽  
Guangxu Zhang ◽  
...  

Abstract Background: Wheat processing quality is an important factor in evaluating overall wheat quality and dough characteristics are important in assessing the processing quality of wheat. As an important germplasm resource, semi-wild wheat plays an important role in the study of wheat processing quality.Results: In this study, Four dough rheological characteristics were therefore collected in four environments using a nested association mapping (NAM) population, consisting of semi-wild and domesticated wheat varieties, which were used to identify quantitative trait loci (QTL) for wheat processing quality. Using an available single nucleotide polymorphism genetic linkage map, a total of 49 QTL for wheat processing quality were detected, explaining 0.36–10.82% of the phenotypic variation. These QTL were located on all wheat chromosomes except for 2D, 3A, 3D, 6B, 6D and 7D. Compared to previous studies, 29 QTL were newly identified. Four novel QTL, QMlPH-1B.4, QMlPH-3B.4, QWdEm-1B.2 and QWdEm-3B.2, were stably identified in three or more environments, of which QMlPH-3B.4 was a major QTL. Moreover, eight important genetic regions for wheat processing quality were identified on chromosomes 1B, 3B and 4D, which showed pleiotropy for dough characters. In addition, out of 49 QTL, 15 favorable alleles came from three semi-wild parents, suggesting that the QTL alleles provided by the semi-wild parent were unutilized in domesticated varieties.Conclusions: The results show that the semi-wild wheat varieties can enrich the existing wheat gene pool and provide broader variation resources for wheat genetic research.


Sign in / Sign up

Export Citation Format

Share Document