scholarly journals Binary fraction of O and B-type stars from LAMOST data

2021 ◽  
Vol 21 (11) ◽  
pp. 272
Author(s):  
Feng Luo ◽  
Yong-Heng Zhao ◽  
Jiao Li ◽  
Yan-Jun Guo ◽  
Chao Liu

Abstract Binary stars play an important role in the evolution of stellar populations . The intrinsic binary fraction (f bin) of O and B-type (OB) stars in LAMOST DR5 was investigated in this work. We employed a cross-correlation approach to estimate relative radial velocities for each of the stellar spectra. The algorithm described by Sana et al. (2013) was implemented and several simulations were made to assess the performance of the approach. The binary fraction of the OB stars is estimated through comparing the uni-distribution between observations and simulations with the Kolmogorov-Smirnov tests. Simulations show that it is reliable for stars most of whom have six, seven and eight repeated observations. The uncertainty of orbital parameters of binarity becomes larger when observational frequencies decrease. By adopting the fixed power exponents of π = −0.45 and κ = −1 for period and mass ratio distributions, respectively, we obtain that f bin = 0.4 − 0.06 + 0.05 for the samples with more than three observations. When we consider the full samples with at least two observations, the binary fraction turns out to be 0.37 − 0.03 + 0.03 . These two results are consistent with each other in 1σ.

2018 ◽  
Vol 616 ◽  
pp. A47 ◽  
Author(s):  
Daniel Thun ◽  
Wilhelm Kley

Aims. The discovery of planets in close orbits around binary stars raises questions about their formation. It is believed that these planets formed in the outer regions of the disc and then migrated through planet-disc interaction to their current location. Considering five different systems (Kepler-16, -34, -35, -38, and -413) we model planet migration through the disc, with special focus on the final orbital elements of the planets. We investigate how the final orbital parameters are influenced by the disc and planet masses. Methods. Using two-dimensional, locally isothermal, and viscous hydrodynamical simulations, we first model the disc dynamics for all five systems, followed by a study of the migration properties of embedded planets with different masses. To strengthen our results, we apply two grid-based hydrodynamical codes using different numerics (PLUTO and FARGO3D). Results. For all systems, we find that the discs become eccentric and precess slowly. We confirm the bifurcation feature in the precession period – gap-size diagram for different binary mass ratios. The Kepler-16, -35, -38, and -413 systems lie on the lower branch and Kepler-34 on the upper one. For systems with small binary eccentricity, we find a new non-monotonic, loop-like feature. In all systems, the planets migrate to the inner edge of the disc cavity. Depending on the planet-disc mass ratio, we observe one of two different regimes. Massive planets can significantly alter the disc structure by compressing and circularising the inner cavity and they remain on nearly circular orbits. Lower-mass planets are strongly influenced by the disc, their eccentricity is excited to high values, and their orbits are aligned with the inner disc in a state of apsidal corotation. In our simulations, the final locations of the planets are typically too large with respect to the observations because of the large inner gaps of the discs. The migrating planets in the most eccentric discs (around Kepler-34 and -413) show the largest final eccentricity in agreement with the observations.


Author(s):  
Sara Bulut ◽  
Baris Hoyman ◽  
Ahmet Dervisoglu ◽  
Orkun Özdarcan ◽  
Ömür Cakilrli

Abstract We present results of the combined photometric and spectroscopic analysis of four systems, which are eclipsing binaries with a twin–component (mass ratio q ≃ 1). These are exceptional tools to provide information for probing the internal structure of stars. None of the systems were previously recognized as twin binaries. We used a number of high–resolution optical spectra to calculate the radial velocities and later combined them with photometry to derive orbital parameters. Temperatures and metallicities of systems were estimated from high-resolution spectra. For each binary, we obtained a full set of orbital and physical parameters, reaching precision below 3 per cent in masses and radii for whole pairs. By comparing our results with PARSEC and MIST isochrones, we assess the distance, age and evolutionary status of the researched objects. The primary and/or secondary stars of EPIC 216075815 and EPIC 202843107 are one of the cases where asteroseismic parameters of δ Sct and γ Dor pulsators were confirmed by an independent method and rare examples of the twin–eclipsing binaries, therefore the following analyses and results concern the pulsating nature of the components.


2001 ◽  
Vol 183 ◽  
pp. 283-288
Author(s):  
C.D. Scarfe

AbstractI have used the 1.2-m telescope and coudé spectrograph of the Dominion Astrophysical Observatory for more than 30 years in a program of radial-velocity observations of binary stars. The program was begun with photographic plates as detectors, but for 20 years the primary detector has been the radial-velocity scanner, which cross-correlates stellar spectra with an artificial mask.Since some of the binaries under observation have periods of several years, the instrument’s stability is an important consideration. I have therefore been obliged to observe standard stars and asteroids to check its performance. These observations are of relevance to efforts to improve the IAU standard star system.I will describe the telescope, spectrograph and scanner, and will briefly discuss some of the results obtained for a selection of binary and multiple stars.


1999 ◽  
Vol 170 ◽  
pp. 325-330
Author(s):  
B. Khalesseh

AbstractNew radial velocity measurements of the Algol-type eclipsing binary BD +52 °2009, based on Reticon observations, are presented. The velocity measures are based on fitting theoretical profiles, generated by a physical model of the binary, to the observed cross-correlation function (ccf). Such profiles match this function very well, much better in fact than Gaussian profiles, which are generally used. Measuring the ccf’s with Gaussian profiles yields the following results: mp sin3i = 2.55 ± 0.05m⊙, ms sin3i = 1.14 ± 0.03m⊙, (ap + as) sin i = 7.34 ± 0.05R⊙, and mp/ms = 2.23 ± 0.05. However, measuring the ccf’s with theoretical profiles yields a mass ratio of 2.33 and following results: mp sin3i = 2.84 ± 0.05m⊙, ms sin3i = 1.22 ± 0.03m⊙, (ap + as) sin i = 7.56 ± 0.05R⊙. The system has a semi-detached configuration. By combining the solution of a previously published light curve with the spectroscopic orbit, one can obtain the following physical parameters: mp = 2.99m⊙, ms3 = 1.28m⊙, < Tp >= 9600K, < Ts >= 5400K, < Rp >= 2.35R⊙, < Rs >= 2.12R⊙. The system consists of an A0 primary and a G2 secondary.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012048
Author(s):  
Zhongmu Li ◽  
Chen Yan

Abstract Binary stars are common in the universe, but binary fractions are various in different star clusters and galaxies. Studies have shown that binary fraction affects the integrated spectral energy distributions obviously, in particular in the UV band. It affects spectral fitting of many star clusters and galaxies significantly. However, previous works usually take a fixed binary fraction, i.e., 0.5, and this is far from getting accurate results. Therefore, it is important to model the integrated spectral energy distributions of stellar populations with various binary fractions. This work presents a modeling of spectral energy distributions of simple stellar populations with binary fractions of 0.3, 0.7, and 1.0. The results are useful for different kinds of spectral studies.


2021 ◽  
Vol 21 (10) ◽  
pp. 265
Author(s):  
Jian-Ping Xiong ◽  
Bo Zhang ◽  
Chao Liu ◽  
Jiao Li ◽  
Yong-Heng Zhao ◽  
...  

Abstract The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) started a median-resolution spectroscopic (MRS, R ∼7500) survey since October 2018. The main scientific goals of MRS, including binary stars, pulsators and other variable stars, were launched with a time-domain spectroscopic survey. However, the systematic errors, including the bias induced from wavelength calibration and the systematic difference between different spectrographs, have to be carefully considered during radial velocity measurement. In this work, we provide a technique to correct the systematics in the wavelength calibration based on the relative radial velocity measurements from LAMOST MRS spectra. We show that, for the stars with multi-epoch spectra, the systematic bias which is induced from the exposures on different nights can be corrected well for LAMOST MRS in each spectrograph. In addition, the precision of radial velocity zero-point of multi-epoch time-domain observations reaches below 0.5 km s−1. As a by-product, we also give the constant star candidates**, which can be the secondary radial-velocity standard star candidates of LAMOST MRS time-domain surveys.


2002 ◽  
Vol 185 ◽  
pp. 86-87
Author(s):  
M. Ausseloos ◽  
C. Aerts ◽  
K. Uytterhoeven

AbstractWe introduce our observational study of the orbital motion of β Cen. Using 463 high signal-to-noise, high-resolution spectra obtained over a timespan of 12 years it is shown that the radial velocity of β Cen varies with an orbital period of 357.0 days. We derive for the first time the orbital parameters of β Cen and find a very eccentric orbit (e = 0.81) and similar component masses with a mass ratio M1/M2 = 1.02. Both the primary and the secondary exhibit periodic line-profile variations.


1992 ◽  
Vol 135 ◽  
pp. 469-476
Author(s):  
I.I. Balega ◽  
Y.Y. Balega ◽  
V.A. Vasyuk ◽  
J.J. McManus

During the last 15 years more than 9,000 speckle interferometric measurements of binary stars have been collected using large optical telescopes (McAlister & Hartkopf 1988). Among them a significant contribution to the world speckle data has been made by the 6-m telscope near Zelenchuk. Up to now this instrument provides the maximal spatial resolution for single–aperture telescopes. First speckle images of the binary Capella were recorded at the telescope in 1977 (Balega & Tikhonov 1977), but we spent 5 more years to create special television techniques for photon counting and digital means for image processing before we started the regular interferometric program of binary observations in the wide range of stellar magnitudes. At first, the measurements were conducted in cooperation with French astronomers from the Centre d’Etudes et de Recherches Geodynamiques et Astronomiques using the optical camera and the television detector developed by Blazit et al. (1977). Since 1983 our equipment has been in use. The program of observations was oriented upon the traditional problems of multiple star speckle interferometry:1.Determination of stellar distances and masses for different types of binaries whose orbital elements can be derived. This includes already known fast visual and astrometric pairs with undetermined orbits, spectroscopic binaries that can be resolved directly, and newly discovered interferometric pairs which show fast orbital motion. The main attention was devoted to the late–type dwarfs in the vicinity of the Sun.2.Search for the secondary components whose existence could explain anomalies of stellar spectra or photometry (stars with composite spectra, occultation binaries, etc.)3.Study of unusual binaries (symbiotic stars, binaries with relativistic components, such as SS 433, etc.)


2020 ◽  
Vol 495 (1) ◽  
pp. 600-613 ◽  
Author(s):  
Tom Kimpson ◽  
Kinwah Wu ◽  
Silvia Zane

ABSTRACT Pulsars (PSRs) orbiting intermediate or supermassive black holes at the centre of galaxies and globular clusters are known as Extreme Mass Ratio Binaries (EMRBs) and have been identified as precision probes of strong-field GR. For appropriate orbital parameters, some of these systems may also emit gravitational radiation in a ‘burst-like’ pattern. The observation of this burst radiation in conjunction with the electromagnetic radio timing signal would allow for multimessenger astronomy in strong-field gravitational regimes. In this work we investigate gravitational radiation from these PSR-EMRBs, calculating the waveforms and SNRs and explore the influence of this GW on the pulsar radio signal. We find that for typical PSR-EMRBs, gravitational burst radiation should be detectable from both the Galactic centre and the centre of stellar clusters, and that this radiation will not meaningfully affect the pulsar timing signal, allowing PSR-EMRB to remain ‘clean’ test-beds of strong-field GR.


2019 ◽  
Vol 631 ◽  
pp. A118 ◽  
Author(s):  
Fabian Göttgens ◽  
Tim-Oliver Husser ◽  
Sebastian Kamann ◽  
Stefan Dreizler ◽  
Benjamin Giesers ◽  
...  

Aims. Globular clusters produce many exotic stars due to a much higher frequency of dynamical interactions in their dense stellar environments. Some of these objects were observed together with several hundred thousand other stars in our MUSE survey of 26 Galactic globular clusters. Assuming that at least a few exotic stars have exotic spectra (i.e. spectra that contain emission lines), we can use this large spectroscopic data set of over a million stellar spectra as a blind survey to detect stellar exotica in globular clusters. Methods. To detect emission lines in each spectrum, we modelled the expected shape of an emission line as a Gaussian curve. This template was used for matched filtering on the differences between each observed 1D spectrum and its fitted spectral model. The spectra with the most significant detections of Hα emission are checked visually and cross-matched with published catalogues. Results. We find 156 stars with Hα emission, including several known cataclysmic variables (CV) and two new CVs, pulsating variable stars, eclipsing binary stars, the optical counterpart of a known black hole, several probable sub-subgiants and red stragglers, and 21 background emission-line galaxies. We find possible optical counterparts to 39 X-ray sources, as we detected Hα emission in several spectra of stars that are close to known positions of Chandra X-ray sources. This spectral catalogue can be used to supplement existing or future X-ray or radio observations with spectra of potential optical counterparts to classify the sources.


Sign in / Sign up

Export Citation Format

Share Document