arq schemes
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 4)

H-INDEX

21
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shuang Wu ◽  
Qingyang Guan ◽  
Shanshan Li

For IoTs of smart city scenarios always with the low cost, low power consumption, and high transmission delay properties, the traditional protocols based on feedback messages, e.g., the Automatic Repeat reQuest (ARQ) schemes, would dramatically affect the transmission efficiency. Therefore, the LT codes with only one feedback message in each entire coding process can be used to substitute the traditional protocols. As in many IoTs of smart city scenarios, the data must have both high transmission efficiency and timeliness requirements; thus, the negative effect of only the feedback message in each entire coding process cannot be neglected in such transmission environments. To enhance the transmission efficiency of such ensembles, a novel LT scheme without feedback messages is proposed in this paper. By presenting the definitions of optimal decoding overhead and recovery ratio per symbol, the optimal decoding overhead of LT codes can be found directly, then the encoding overhead of the encoder can be predesigned also. For this reason, the feedback messages in LT schemes can be removed. By using the proposed LT scheme, the transmission efficiency of IoT of smart city scenarios can be enhanced.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2065
Author(s):  
Cong Lu ◽  
Bin Wu ◽  
Lei Wang ◽  
Zhiwei Wei ◽  
Yu Tang

The latest IEEE 802.11ax protocol has been launched to provide efficient services by adopting multi-user (MU) transmission technology. However, the MU transmissions in the aggregation-enabled wireless local area networks (WLANs) face two drawbacks when adopting the existing automatic repeat request (ARQ) schemes. (1) The failed packets caused by the channel noise can block the submission of subsequent packets and the transmission of queued ones. (2) When the lengths of aggregate media access control protocol data units (A-MPDU) transmitted by different users are varied, dummy bits should be added to the shorter frames to align the transmission duration. These drawbacks degrade the quality of service (QoS) performances, such as throughput, latency, and packet loss rate. In this paper, a novel QoS-aware backup padding ARQ (BP-ARQ) scheme for MU transmissions in the IEEE802.11ax WLANs is proposed to address these problems. The proposed scheme utilizes backups of selected packets instead of dummy bits to align the duration and to supress the influence of channel noise. An optimization problem that aims to improve the blocking problem of the failed packets is derived to determine the selection of packets. The promotion of the proposed scheme is well demonstrated by the simulations in NS-3.


Wiley 5G Ref ◽  
2020 ◽  
pp. 1-17
Author(s):  
Amitav Mukherjee
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Khongorzul Dashdondov ◽  
Yong-Ki Kim ◽  
Mi-Hye Kim

This paper discusses packet data multiplexing using stop-and-wait (SW) and go-back-N (GBN) automatic repeat request (ARQ) protocols under Markovian interruption. The Markov process shows the output channel by examining the Markovian interruption using inactive and active states. We assume that whenever the voice signal is active the output link is used and will be blocked for the data packet, and data traffic input is exponentially distributed in increments via the Poisson process, with each data packet transmitted within an individual time slot. Active and inactive periods of the original voice signal are geometrically distributed with their unique parameters. The study introduces the concept of average service time and average queueing delay to simplify the analysis and shows that data multiplexers using SW and GBN ARQ schemes exhibit queueing behaviour when the interruption signal follows a Markov process. Moreover, we derived the effective capacity that features the average arrival rate at the transmitter queue under the quality of service (QoS) constraints. Also from the results system stability depends on the error probability and Markovian interruptions occurrence. Simulation results verify the theoretical analysis.


2017 ◽  
Vol 21 (5) ◽  
pp. 975-978 ◽  
Author(s):  
Mohammad Sadegh Mohammadi ◽  
Iain B. Collings ◽  
Qi Zhang

Author(s):  
Tumula V. K. Chaitanya ◽  
Tho Le-Ngoc ◽  
Erik G. Larsson

Reliability of data transmission is a fundamental problem in wireless communications. Fading in wireless channels causes the signal strength to vary at the receiver and this results in loss of data packets. To improve the reliability, automatic repeat request (ARQ) schemes were introduced. However these ARQ schemes suffer from a reduction in the throughput. To address the throughput reduction, conventional ARQ schemes were combined with forward error correction (FEC) schemes to develop hybrid-ARQ (HARQ) schemes. For improving the reliability of data transmission, HARQ schemes are included in the wireless standards like LTE, LTE-Advanced and WiMAX. Conventional HARQ systems use the same transmission power in different ARQ rounds. However this is not optimal in terms of minimizing the average energy spent for successful transmission of a data packet. In this book chapter, the recent research results related to HARQ systems are reviewed first. Next, optimal resource allocation in HARQ systems with a limit on the maximum number of allowed transmissions for a data packet is considered in the next part. Specifically, the problem of minimizing the rate-outage probability under a constraint on average energy consumption per data packet for both incremental redundancy (IR)-based and Chase combining (CC)-based HARQ systems is considered. Towards solving the optimization problems, the expressions for rate-outage probability of both IR-HARQ and CC-HARQ systems in i.i.d. Rayleigh fading channels is provided. Methods to solve the optimization problems using nonlinear optimization techniques are discussed. To reduce the complexity of finding a solution, the rate-outage probability expressions are approximated, using which, the non-convex optimization problems are converted into geometric programming problems (GPPs), for which the closed-form solutions are derived. Illustrative and analytical results show that the proposed power allocation provides significant gains in energy savings over the traditional equal power allocation transmission, and the closed-form GPP solution can provide a performance close to that of the exact method for smaller values of rate-outage probability.


Sign in / Sign up

Export Citation Format

Share Document