Energy-Efficient Power Allocation for HARQ Systems

Author(s):  
Tumula V. K. Chaitanya ◽  
Tho Le-Ngoc ◽  
Erik G. Larsson

Reliability of data transmission is a fundamental problem in wireless communications. Fading in wireless channels causes the signal strength to vary at the receiver and this results in loss of data packets. To improve the reliability, automatic repeat request (ARQ) schemes were introduced. However these ARQ schemes suffer from a reduction in the throughput. To address the throughput reduction, conventional ARQ schemes were combined with forward error correction (FEC) schemes to develop hybrid-ARQ (HARQ) schemes. For improving the reliability of data transmission, HARQ schemes are included in the wireless standards like LTE, LTE-Advanced and WiMAX. Conventional HARQ systems use the same transmission power in different ARQ rounds. However this is not optimal in terms of minimizing the average energy spent for successful transmission of a data packet. In this book chapter, the recent research results related to HARQ systems are reviewed first. Next, optimal resource allocation in HARQ systems with a limit on the maximum number of allowed transmissions for a data packet is considered in the next part. Specifically, the problem of minimizing the rate-outage probability under a constraint on average energy consumption per data packet for both incremental redundancy (IR)-based and Chase combining (CC)-based HARQ systems is considered. Towards solving the optimization problems, the expressions for rate-outage probability of both IR-HARQ and CC-HARQ systems in i.i.d. Rayleigh fading channels is provided. Methods to solve the optimization problems using nonlinear optimization techniques are discussed. To reduce the complexity of finding a solution, the rate-outage probability expressions are approximated, using which, the non-convex optimization problems are converted into geometric programming problems (GPPs), for which the closed-form solutions are derived. Illustrative and analytical results show that the proposed power allocation provides significant gains in energy savings over the traditional equal power allocation transmission, and the closed-form GPP solution can provide a performance close to that of the exact method for smaller values of rate-outage probability.

2021 ◽  
Author(s):  
Anand Jee ◽  
KAMAL AGRAWAL ◽  
Shankar Prakriya

This paper investigates the performance of a framework for low-outage downlink non-orthogonal multiple access (NOMA) signalling using a coordinated direct and relay transmission (CDRT) scheme with direct links to both the near-user (NU) and the far-user (FU). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying are considered. In this framework, NU and FU combine the signals from BS and R to attain good outage performance and harness a diversity of two without any need for feedback. For the NU, this serves as an incentive to participate in NOMA signalling. For both NU and FU, expressions for outage probability and throughput are derived in closed form. High-SNR approximations to the outage probability are also presented. We demonstrate that the choice of power allocation coefficient and target rate is crucial to maximize the NU performance while ensuring a desired FU performance. We demonstrate performance gain of the proposed scheme over selective decode-and-forward (SDF) CDRT-NOMA in terms of three metrics: outage probability, sum throughput and energy efficiency. Further, we demonstrate that by choosing the target rate intelligently, the proposed CDRT NOMA scheme ensures higher energy efficiency (EE) in comparison to its orthogonal multiple access counterpart. Monte Carlo simulations validate the derived expressions.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Lingwei Xu ◽  
Hao Zhang ◽  
T. Aaron Gulliver

The lower bound on outage probability (OP) of mobile-to-mobile (M2M) cooperative networks overN-Nakagami fading channels is derived for SNR-based hybrid decode-amplify-forward (HDAF) relaying. The OP performance under different conditions is evaluated through numerical simulation to verify the accuracy of the analysis. These results show that the fading coefficient, number of cascaded components, relative geometric gain, and power-allocation are important parameters that influence this performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Joongheon Kim ◽  
Jae-Jin Lee ◽  
Woojoo Lee

This paper discusses the stochastic and strategic control of 60 GHz millimeter-wave (mmWave) wireless transmission for distributed and mobile virtual reality (VR) applications. In VR scenarios, establishing wireless connection between VR data-center (called VR server (VRS)) and head-mounted VR device (called VRD) allows various mobile services. Consequently, utilizing wireless technologies is obviously beneficial in VR applications. In order to transmit massive VR data, the 60 GHz mmWave wireless technology is considered in this research. However, transmitting the maximum amount of data introduces maximum power consumption in transceivers. Therefore, this paper proposes a dynamic/adaptive algorithm that can control the power allocation in the 60 GHz mmWave transceivers. The proposed algorithm dynamically controls the power allocation in order to achieve time-average energy-efficiency for VR data transmission over 60 GHz mmWave channels while preserving queue stabilization. The simulation results show that the proposed algorithm presents desired performance.


2021 ◽  
Author(s):  
Anand Jee ◽  
KAMAL AGRAWAL ◽  
Shankar Prakriya

This paper investigates the performance of a framework for low-outage downlink non-orthogonal multiple access (NOMA) signalling using a coordinated direct and relay transmission (CDRT) scheme with direct links to both the near-user (NU) and the far-user (FU). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying are considered. In this framework, NU and FU combine the signals from BS and R to attain good outage performance and harness a diversity of two without any need for feedback. For the NU, this serves as an incentive to participate in NOMA signalling. For both NU and FU, expressions for outage probability and throughput are derived in closed form. High-SNR approximations to the outage probability are also presented. We demonstrate that the choice of power allocation coefficient and target rate is crucial to maximize the NU performance while ensuring a desired FU performance. We demonstrate performance gain of the proposed scheme over selective decode-and-forward (SDF) CDRT-NOMA in terms of three metrics: outage probability, sum throughput and energy efficiency. Further, we demonstrate that by choosing the target rate intelligently, the proposed CDRT NOMA scheme ensures higher energy efficiency (EE) in comparison to its orthogonal multiple access counterpart. Monte Carlo simulations validate the derived expressions.


Sign in / Sign up

Export Citation Format

Share Document