scholarly journals A General Approach for All-visible-light Switching of Diarylethenes through Triplet Sensitization using Semiconducting Nanocrystals

Author(s):  
Lili Hou ◽  
Wera Larsson ◽  
Stefan Hecht ◽  
Joakim Andreasson ◽  
Bo Albinsson

Abstract Coupling semiconducting nanocrystals (NCs) with organic molecules provides an efficient route to generate and transfer triplet excitons. These excitons can be used to power photochemical transformations such as photoisomerization reactions using low energy radiation. Thus, it is desirable to develop a general approach that can efficiently be used to control photoswitches using all-visible-light aiming at future applications in life- and material sciences. Here, we demonstrate a simple ‘cocktail’ strategy that can achieve all-visible-light switchable diarylethenes (DAEs) through triplet energy transfer from the hybrid of CdS NCs and phenanthrene-3-carboxylic acid, with high photoisomerization efficiency and improved fatigue resistance. The size-tunable excitation energies of CdS NCs make it possible to precisely match the corresponding energy of the relevant DAE photoswitch. We demonstrate reversible all-visible-light photoisomerization of a series of DAE derivatives both in the liquid and solid state, even in the presence of oxygen. Our general strategy is promising for fabrication of all-visible-light activated optoelectronic devices as well as memories, and should in principle be adaptable to photopharmacology.

Author(s):  
Yi-Mei Huang ◽  
Tse-Ying Chen ◽  
Deng-Gao Chen ◽  
Hsuan-Chi Liang ◽  
Cheng-Ham Wu ◽  
...  

35Cbz4BzCN, a novel universal host with long triplet lifetime, has been developed. The triplet excitons in 35Cbz4BzCN can be effectively harvested by phosphorescence and thermally activated delayed fluorescence emitters. In...


2020 ◽  
Author(s):  
Katie Rykaczewski ◽  
Corinna Schindler

<div> <p>One of the most efficient ways to synthesize oxetanes is the light-enabled [2+2] cycloaddition reaction of carbonyls and alkenes, referred to as the Paternò-Büchi reaction. The reaction conditions for this transformation typically require the use of high energy UV light to excite the carbonyl, limiting the applications, safety, and scalability. We herein report the development of a visible light-mediated Paternò-Büchi reaction protocol that relies on triplet energy transfer from an iridium-based photocatalyst to the carbonyl substrates. This mode of activation is demonstrated for a variety of aryl glyoxylates and negates the need for both, visible light-absorbing carbonyl starting materials or UV light to enable access to a variety of functionalized oxetanes in up to 99% yield.</p> </div> <br>


ACS Nano ◽  
2020 ◽  
Vol 14 (8) ◽  
pp. 10748-10749
Author(s):  
Victor Gray ◽  
Jesse R. Allardice ◽  
Zhilong Zhang ◽  
Simon Dowland ◽  
James Xiao ◽  
...  

1996 ◽  
pp. 2049-2050 ◽  
Author(s):  
Kasi Pitchumani ◽  
Janet N. Gamlin ◽  
V. Ramamurthy ◽  
John R. Scheffer

Author(s):  
Andrew C. Benniston ◽  
Anthony Harriman ◽  
Songjie Yang

Here, we recognize the growing significance of miniaturized devices as medical diagnostic tools and highlight the need to provide a convenient means of powering such instruments when implanted into the body. One of the most promising approaches to this end involves using a light-collection facility to absorb incident white light and transfer the photonic energy to a tiny semiconductor embedded on the device. Although fluorescent organic molecules offer strong potential as modules for such solar collectors, we emphasize the promise offered by transition metal complexes. Thus, an extended series of binuclear Ru(II)/Os(II) poly(pyridine) complexes has been shown to be highly promising sensitizers for amorphous silicon solar cells. These materials absorb a high fraction of visible light while the Ru(II)-based units possess triplet energies that are comparable to those of the naphthalene-based bridge. The metal complex injects a triplet exciton into the bridge and this, in turn, is trapped by the Os(II)-based terminal. The result is extremely efficacious triplet-energy transfer; at room temperature the rate of energy transfer is independent of distance over some 6 nm and only weakly dependent on temperature.


Author(s):  
Marc R. Becker ◽  
Alistair D. Richardson ◽  
Corinna S. Schindler

<p>Due to the lack of synthetic methods for their synthesis, azetidines are an underrepresented class of nitrogen-containing heterocycles. Herein, we describe the development of a mild, general protocol for the synthesis of azetidines relying on a visible light-mediated [2+2] cycloaddition between oximes and olefins catalyzed by an iridium photocatalyst. This approach is characterized by its operational simplicity, low catalyst loadings and functional group tolerance. Mechanistic investigations suggest that a triplet energy transfer mechanism is operative.<br></p>


2015 ◽  
Vol 6 (7) ◽  
pp. 3724-3737 ◽  
Author(s):  
Song Guo ◽  
Liang Xu ◽  
Kejing Xu ◽  
Jianzhang Zhao ◽  
Betül Küçüköz ◽  
...  

Hydrogen bonding-mediated supramolecular triplet photosensitizers with easily interchangeable visible light-harvesting Bodipy modules and the fullerene intersystem crossing module were devised.


Sign in / Sign up

Export Citation Format

Share Document