aerosol component
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 0)

2022 ◽  
Vol 266 ◽  
pp. 105958
Author(s):  
Lei Li ◽  
Huizheng Che ◽  
Xindan Zhang ◽  
Cheng Chen ◽  
Xingfeng Chen ◽  
...  

Author(s):  
Kouji Adachi ◽  
Jack E. Dibb ◽  
Eric Scheuer ◽  
Joseph M. Katich ◽  
Joshua P. Schwarz ◽  
...  

2021 ◽  
Author(s):  
Li Zhang ◽  
Raffaele Montuoro ◽  
Stuart A. McKeen ◽  
Barry Baker ◽  
Partha S. Bhattacharjee ◽  
...  

Abstract. NOAA’s National Weather Service (NWS) is on its way to deploy various operational prediction applications using the Unified Forecast System (https://ufscommunity.org/), a community-based coupled, comprehensive Earth modeling system. An aerosol model component developed in a collaboration between the Global Systems Laboratory, Chemical Science Laboratory, the Air Resources Laboratory, and Environmental Modeling Center (GSL, CSL, ARL, EMC) was coupled online with the FV3 Global Forecast System (FV3GFS) using the National Unified Operational Prediction Capability (NUOPC)-based NOAA Environmental Modeling System (NEMS) software framework. This aerosol prediction system replaced the NEMS GFS Aerosol Component (NGAC) system in the National Center for Environment Prediction (NCEP) production suite in September 2020 as one of the ensemble members of the Global Ensemble Forecast System (GEFS), dubbed GEFS-Aerosols v1. The aerosol component of atmospheric composition in GEFS is based on the Weather Research and Forecasting model (WRF-Chem) that was previously included into FIM-Chem (Zhang et al, 2021). GEFS-Aerosols includes bulk modules from the Goddard Chemistry Aerosol Radiation and Transport model (GOCART). Additionally, the biomass burning plume rise module from High-Resolution Rapid Refresh (HRRR)-Smoke was implemented; the GOCART dust scheme was replaced by the FENGSHA dust scheme (developed by ARL); the Blended Global Biomass Burning Emissions Product (GBBEPx V3) provides biomass burning emission and Fire Radiative Power (FRP) data; and the global anthropogenic emission inventories are derived from the Community Emissions Data System (CEDS). All sub-grid scale transport and deposition is handled inside the atmospheric physics routines, which required consistent implementation of positive definite tracer transport and wet scavenging in the physics parameterizations used by NCEP’s operational Global Forecast System based on FV3 (FV3GFS). This paper describes the details of GEFS-Aerosols model development and evaluation of real-time and retrospective runs using different observations from in situ measurement, satellite and aircraft data. GEFS-Aerosols predictions demonstrate substantial improvements for both composition and variability of aerosol distributions over those from the former operational NGAC system.


Author(s):  
N.V. Balugin ◽  
V.A. Yushkov

The article briefly describes an optical probe for direct measurements and studies of the vertical distribution of the aerosol component of the atmosphere. The operation principle is based on the measurement of backscattering from a sequence of powerful probing pulses. The analyzed air volume is located at a close (0.5 m) distance from the radiation source. LEDs at 470 nm and 940 nm are used as radiation sources. The probe can be easily integrated with all types of standard aerological radiosondes, meteorological rockets, and having its own navigation module and telemetry system it can also be used in autonomous launches. The results of measurements carried out at the Dolgoprudny aerological station in November 2020, which recorded low values of the aerosol backscattering coefficients in the stratosphere, are presented.


2018 ◽  
Vol 11 (8) ◽  
pp. 4775-4795 ◽  
Author(s):  
Carmen Córdoba-Jabonero ◽  
Michaël Sicard ◽  
Albert Ansmann ◽  
Ana del Águila ◽  
Holger Baars

Abstract. The application of the POLIPHON (POlarization-LIdar PHOtometer Networking) method is presented for the first time in synergy with continuous 24/7 polarized Micro-Pulse Lidar (P-MPL) measurements to derive the vertical separation of two or three particle components in different aerosol mixtures, and the retrieval of their particular optical properties. The procedure of extinction-to-mass conversion, together with an analysis of the mass extinction efficiency (MEE) parameter, is described, and the relative mass contribution of each aerosol component is also derived in a further step. The general POLIPHON algorithm is based on the specific particle linear depolarization ratio given for different types of aerosols and can be run in either 1-step (POL-1) or 2 steps (POL-2) versions with dependence on either the 2- or 3-component separation. In order to illustrate this procedure, aerosol mixing cases observed over Barcelona (NE Spain) are selected: a dust event on 5 July 2016, smoke plumes detected on 23 May 2016 and a pollination episode observed on 23 March 2016. In particular, the 3-component separation is just applied for the dust case: a combined POL-1 with POL-2 procedure (POL-1/2) is used, and additionally the fine-dust contribution to the total fine mode (fine dust plus non-dust aerosols) is estimated. The high dust impact before 12:00 UTC yields a mean mass loading of 0.6±0.1 g m−2 due to the prevalence of Saharan coarse-dust particles. After that time, the mean mass loading is reduced by two-thirds, showing a rather weak dust incidence. In the smoke case, the arrival of fine biomass-burning particles is detected at altitudes as high as 7 km. The smoke particles, probably mixed with less depolarizing non-smoke aerosols, are observed in air masses, having their origin from either North American fires or the Arctic area, as reported by HYSPLIT back-trajectory analysis. The particle linear depolarization ratio for smoke shows values in the 0.10–0.15 range and even higher at given times, and the daily mean smoke mass loading is 0.017±0.008 g m−2, around 3 % of that found for the dust event. Pollen particles are detected up to 1.5 km in height from 10:00 UTC during an intense pollination event with a particle linear depolarization ratio ranging between 0.10 and 0.15. The maximal mass loading of Platanus pollen particles is 0.011±0.003 g m−2, representing around 2 % of the dust loading during the higher dust incidence. Regarding the MEE derived for each aerosol component, their values are in agreement with others referenced in the literature for the specific aerosol types examined in this work: 0.5±0.1 and 1.7±0.2 m2 g−1 are found for coarse and fine dust particles, 4.5±1.4 m2 g−1 is derived for smoke and 2.4±0.5 m2 g−1 for non-smoke aerosols with Arctic origin, and a MEE of 2.4±0.8 m2 g−1 is obtained for pollen particles, though it can reach higher or lower values depending on predominantly smaller or larger pollen grain sizes. Results reveal the high potential of the P-MPL system, a simple polarization-sensitive elastic backscatter lidar working in a 24/7 operation mode, to retrieve the relative optical and mass contributions of each aerosol component throughout the day, reflecting the daily variability of their properties. In fact, this procedure can be simply implemented in other P-MPLs that also operate within the worldwide Micro-Pulse Lidar Network (MPLNET), thus extending the aerosol discrimination at a global scale. Moreover, the method has the advantage of also being relatively easily applicable to space-borne lidars with an equivalent configuration such as the ongoing Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) on board NASA CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) and the forthcoming Atmospheric Lidar (ATLID) on board the ESA EarthCARE mission.


Sign in / Sign up

Export Citation Format

Share Document