deoxyhypusine hydroxylase
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 0)

2022 ◽  
Author(s):  
E. Agboigba ◽  
E. Kuchaev ◽  
N. Garaeva ◽  
E. Klochkova ◽  
A. Varfolomeev ◽  
...  




Amino Acids ◽  
2021 ◽  
Author(s):  
Myung Hee Park ◽  
Rajesh Kumar Kar ◽  
Siddharth Banka ◽  
Alban Ziegler ◽  
Wendy K. Chung

AbstractHypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is a derivative of lysine that is formed post-translationally in the eukaryotic initiation factor 5A (eIF5A). Its occurrence at a single site in one cellular protein defines hypusine synthesis as one of the most specific post-translational modifications. Synthesis of hypusine involves two enzymatic steps: first, deoxyhypusine synthase (DHPS) cleaves the 4-aminobutyl moiety of spermidine and transfers it to the ε-amino group of a specific lysine residue of the eIF5A precursor protein to form an intermediate, deoxyhypusine [Nε-(4-aminobutyl)lysine]. This intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DOHH) to form hypusine in eIF5A. eIF5A, DHPS, and DOHH are highly conserved in all eukaryotes, and both enzymes exhibit a strict specificity toward eIF5A substrates. eIF5A promotes translation elongation globally by alleviating ribosome stalling and it also facilitates translation termination. Hypusine is required for the activity of eIF5A, mammalian cell proliferation, and animal development. Homozygous knockout of any of the three genes, Eif5a, Dhps, or Dohh, leads to embryonic lethality in mice. eIF5A has been implicated in various human pathological conditions. A recent genetic study reveals that heterozygous germline EIF5A variants cause Faundes–Banka syndrome, a craniofacial–neurodevelopmental malformations in humans. Biallelic variants of DHPS were identified as the genetic basis underlying a rare inherited neurodevelopmental disorder. Furthermore, biallelic DOHH variants also appear to be associated with neurodevelopmental disorder. The clinical phenotypes of these patients include intellectual disability, developmental delay, seizures, microcephaly, growth impairment, and/or facial dysmorphisms. Taken together, these findings underscore the importance of eIF5A and the hypusine modification pathway in neurodevelopment in humans.



Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1261
Author(s):  
Péter Pálfi ◽  
László Bakacsy ◽  
Henrietta Kovács ◽  
Ágnes Szepesi

Hypusination is a unique posttranslational modification of eIF5A, a eukaryotic translation factor. Hypusine is a rare amino acid synthesized in this process and is mediated by two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Despite the essential participation of this conserved eIF5A protein in plant development and stress responses, our knowledge of its proper function is limited. In this review, we demonstrate the main findings regarding how eIF5A and hypusination could contribute to plant-specific responses in growth and stress-related processes. Our aim is to briefly discuss the plant-specific details of hypusination and decipher those signal pathways which can be effectively modified by this process. The diverse functions of eIF5A isoforms are also discussed in this review.



2020 ◽  
Vol 8 ◽  
Author(s):  
Mattia D'Agostino ◽  
Stefano Motta ◽  
Alice Romagnoli ◽  
Patrick Orlando ◽  
Luca Tiano ◽  
...  

Translation factor 5A (eIF5A) is one of the most conserved proteins involved in protein synthesis. It plays a key role during the elongation of polypeptide chains, and its activity is critically dependent on hypusination, a post-translational modification of a specific lysine residue through two consecutive enzymatic steps carried out by deoxyhypusine synthase (DHS), with spermidine as substrate, and deoxyhypusine hydroxylase (DOHH). It is well-established that eIF5A is overexpressed in several cancer types, and it is involved in various diseases such as HIV-1 infection, malaria, and diabetes; therefore, the development of inhibitors targeting both steps of the hypusination process is considered a promising and challenging therapeutic strategy. One of the most efficient inhibitors of the hypusination process is the spermidine analog N1-guanyl-1,7-diaminoheptane (GC7). GC7 interacts in a specific binding pocket of the DHS completely blocking its activity; however, its therapeutic use is limited by poor selectivity and restricted bioavailability. Here we have performed a comparative study between human DHS (hDHS) and archaeal DHS from crenarchaeon Sulfolobus solfataricus (aDHS) to understand the structural and dynamical features of the GC7 inhibition. The advanced metadynamics (MetaD) classical molecular dynamics simulations show that the GC7 interaction is less stable in the thermophilic enzyme compared to hDHS that could underlie a lower inhibitory capacity of the hypusination process in Sulfolobus solfataricus. To confirm this hypothesis, we have tested GC7 activity on S. solfataricus by measuring cellular growth, and results have shown the lack of inhibition of aIF5A hypusination in contrast to the established effect on eukaryotic cellular growth. These results provide, for the first time, detailed molecular insights into the binding mechanism of GC7 to aDHS generating the basis for the design of new and more specific DHS inhibitors.



2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Sonia Coni ◽  
Silvia Maria Serrao ◽  
Zuleyha Nihan Yurtsever ◽  
Laura Di Magno ◽  
Rosa Bordone ◽  
...  

ABSTRACTEukaryotic Translation Initiation Factor 5A (EIF5A) is a translation factor regulated by hypusination, a unique posttranslational modification catalyzed by deoxyhypusine synthetase (DHPS) and deoxyhypusine hydroxylase (DOHH) starting from the polyamine spermidine. Emerging data are showing that hypusinated EIF5A regulates key cellular processes such as autophagy, senescence, polyamine homeostasis, energy metabolism, and plays a role in cancer. However, the effects of EIF5A inhibition in preclinical cancer models, the mechanism of action, and specific translational targets are still poorly understood. We show here that hypusinated EIF5A promotes growth of colorectal cancer (CRC) cells by directly regulating MYC biosynthesis at specific pausing motifs. Inhibition of EIF5A hypusination with the DHPS inhibitor GC7 or through lentiviral-mediated knockdown of DHPS or EIF5A reduces the growth of various CRC cells. Multiplex gene expression analysis reveals that inhibition of hypusination impairs the expression of transcripts regulated by MYC, suggesting the involvement of this oncogene in the observed effect. Indeed, we demonstrate that EIF5A regulates MYC elongation without affecting its mRNA content or protein stability, by alleviating ribosome stalling at five distinct pausing motifs in MYC CDS. Of note, we show that blockade of the hypusination axis elicits a remarkable growth inhibitory effect in preclinical models of CRC and significantly reduces the size of polyps in APCMin/+ mice, a model of human familial adenomatous polyposis (FAP). Together, these data illustrate an unprecedented mechanism, whereby the tumor-promoting properties of hypusinated EIF5A are linked to its ability to regulate MYC elongation and provide a rationale for the use of DHPS/EIF5A inhibitors in CRC therapy.



2020 ◽  
Author(s):  


Author(s):  
Daniel J. Puleston ◽  
Francesc Baixauli ◽  
David E. Sanin ◽  
Matteo Villa ◽  
Agnieszka Kabat ◽  
...  

SUMMARYWe report here a central role for polyamines in T cell differentiation and function. Deficiency in ornithine decarboxylase (ODC), a critical enzyme for polyamine synthesis, resulted in a profound failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH1, TH2, TH17, and Treg polarizing conditions, and enhanced colitogenic potential. T cells deficient in deoxyhypusine synthase (DHPS) or deoxyhypusine hydroxylase (DOHH), which sequentially utilize polyamines to generate hypusine, phenocopied Odc-deficient T cells, and mice in which T cells lacked Dhps or Dohh developed colitis. Polyamine-hypusine pathway enzyme deficiency caused widespread chromatin and transcriptional dysregulation accompanied by alterations in histone methylation, histone acetylation, and TCA cycle metabolites. Epigenetic modulation by 2-hydroxyglutarate, or histone acetyltransferase inhibition, restored CD4+ T cell subset specification. Thus, polyamine synthesis via hypusine is critical for maintaining the epigenome to focus TH cell subset fidelity.



2020 ◽  
Vol 22 (39) ◽  
pp. 22736-22745
Author(s):  
Junkai Wang ◽  
Yan Ma ◽  
Xixi Wang ◽  
Ying Zhang ◽  
Hongwei Tan ◽  
...  

Deoxyhypusine hydroxylase is a critical enzyme for hypusination of eukaryotic translation initiation factor 5A.



Author(s):  
Antje Lindae ◽  
Zhenggang Han ◽  
Rolf Hilgenfeld


Sign in / Sign up

Export Citation Format

Share Document