suspended sediment yield
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3173
Author(s):  
Valentin Golosov ◽  
Anatoly Tsyplenkov

This paper discusses the joint impact of catchment complexity in topography, tectonics, climate, landuse patterns, and lithology on the suspended sediment yield (SSY, t km−2 year−1) in the Caucasus region using measurements from 244 gauging stations (GS). A Partial Least Square Regression (PLSR) was used to reveal the relationships between SSY and explanatory variables. Despite possible significant uncertainties on the SSY values, analysis of this database indicates clear spatial patterns of SSY in the Caucasus. Most catchments in the Lesser Caucasia and Ciscaucasia are characterized by relatively low SSY values (<100–150 t km−2 year−1), the Greater Caucasus region generally have higher SSY values (more than 150–300 t km−2 year−1). Partial correlation analyses demonstrated that such proxies of topography as height above nearest drainage (HAND) and normalized steepness index (Ksn) tend to be among the most important ones. However, a PLSR analysis suggested that these variables’ influence is likely associated with peak ground acceleration (PGA). We also found a strong relationship between land cover types (e.g., barren areas and cropland) and SSY in different elevation zones. Nonetheless, adding more gauging stations into analyses and more refined characterizations of the catchments may reveal additional trends.


2021 ◽  
Vol 145 (5-6) ◽  
pp. 249-261
Author(s):  
Tark Çtgez ◽  
Refik Karagül ◽  
Mehmet Özcan

Topography, geological structure and land use play a determinative role in the streamflow and total suspended sediment yield of watersheds having similar climate, soil and vegetation characteristics. In order to facilitate sustainable water resource management and effective land use planning, there is an increasing need for research investigating the effects of these factors. This study was carried out in forested and agricultural dominated subwatersheds of the Big Melen watershed in the Western Black Sea Region of Turkey. Hazelnut plantations are grown on most of the agricultural areas in both watersheds. The forested watershed has a steep topography and its geological structure consists of sandstone-mudstone and sedimentary rock. The agricultural watershed area is larger and unlike the forested watershed, there is argillaceous limestone in its geological structure. The precipitation, streamflow and total suspended sediment yield in the watersheds were measured for two years. The total precipitation of the study area over the two years was 2217.3 mm. The water yield of the forested watershed was 867.6 mm, while that of the agricultural watershed was 654.9 mm. In the two years, the total suspended sediment transported from the forested watershed was 19.51 t ha<sup>-1</sup> and from the agricultural watershed 7.70 t ha<sup>-1</sup>. However, except for the high values measured after an extreme rainfall event, the unit surface suspended sediment yield of the agricultural watershed was found to be higher than that of the forested watershed. These findings showed that watershed characteristics such as slope, geological structure and rainfall intensity may be more effective on the streamflow and total suspended sediment yield of the watersheds than land use.


Author(s):  
Anatolii Tsyplenkov ◽  
Valentin Golosov ◽  
Pelagiya Belyakova

Quantifying and understanding catchment sediment yields is crucial both from a scientific and environmental management perspective. To deepen the understanding of land use impacts and climate change on sediment load, we explore mechanisms of the suspended sediment yield formation in the Northern Caucasus during the Anthropocene. We examine how sediment flux of various river basins with different land-use/landcover and glacier cover changes during the 1925-2018 period. Our analysis is based on observed mean annual suspended sediment discharges (SSD, kg·s−1) and annual fluxes (SSL, t·yr−1) from 33 Roshydromet gauging stations (Russia). SSL series have been analyzed to detect statistically significant changes during the 1925-2018 period. The occurrence of abrupt change points in SSD was investigated using cumulative sum (CUSUM) charts. We found that SSL has decreased by −1.81% per year on average at most gauges. However, the decline was not linear. Several transition years are expected in the region: increasing trends from the 1950s and decreasing trends from 1988-1994. Correlation analyses showed that variation in SSL trend values is mainly explained by gauging station altitude, differences in land use (i.e., the fraction of cropland), and catchment area. Nonetheless, more accurate quantifications of SSL trend values and more refined characterizations of the catchments regarding (historical) land use, soil types/lithology, weather conditions, and topography may reveal other tendencies.


Author(s):  
Ebenezer Boakye ◽  
F. O. K. Anyemedu ◽  
Emmanuel A. Donkor ◽  
Jonathan A. Quaye-Ballard

2020 ◽  
Vol 583 ◽  
pp. 124611 ◽  
Author(s):  
Haiyan Zheng ◽  
Chiyuan Miao ◽  
Dongxian Kong ◽  
Jingwen Wu ◽  
Rui Zhou

2020 ◽  
Author(s):  
Anatoly Tsyplenkov ◽  
Sergey Kharchenko ◽  
Matthias Vanmaercke ◽  
Valentin Golosov

&lt;p&gt;Suspended sediment yield values from glaciated mountain catchments are often among the highest in the world. Nonetheless, the sediment sinks, sources and dynamics can be highly variable in such environments under climate change. The aim of this study is to quantify the different suspended sediment sources of the Djankuat river catchment (A=9,1 km&lt;sup&gt;2&lt;/sup&gt;). This small high mountain stream is located in the Caucasus mountains. It is partly glaciated with steep slopes, alpine meadows and glacial-nival terrains. Large scale geomorphological mapping of the catchment was undertaken using drone images and field surveys. This allowed to identify the main sediment sources as well as key pathways of the sediment to the river. In addition, about 50 composite surface (topsoil) and subsurface (riverbanks) samples were collected within the catchment area to characterize the different sediment sources. Two different mixing models (fingerPRO and SIFT) were applied to evaluate the relative contribution of these sources to river suspended sediment yield. Furthermore, direct measurements of water discharge and turbidity were undertaken at two gauging stations. One of them was located near the edge of glacier and the other about 1 km downstream. This allowed to evaluate the relative contribution of the glacial and proglacial part of the catchment to the total suspended sediment yield. Overall, these independent approaches resulted in relatively similar estimates of the relative importance of the different sources to suspended sediment yield. It has been established that the proportion of glacial material (generated by glacier erosion, including subsurface and supraglacial runoff) in total suspended sediment load decreases from 80-90% at the first 50-100 m from the glacier edge to 60-70% at a distance of 700-1000 m.&lt;/p&gt;&lt;p&gt;&lt;em&gt;This study was funded by the Russian Science Foundation, project no. 19-17-00181&lt;/em&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document