proton track
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 16 (12) ◽  
pp. C12013
Author(s):  
A. Musumarra ◽  
F. Leone ◽  
C. Massimi ◽  
M.G. Pellegriti ◽  
F. Romano ◽  
...  

Abstract Neutron detectors are an essential tool for the development of many research fields, as nuclear, particle and astroparticle physics as well as radiotherapy and radiation safety. Since neutrons cannot directly ionize, their detection is only possible via nuclear reactions. Consequently, neutron-based experimental techniques are related to the detection of charged particle or electromagnetic radiation originating from neutron-induced reactions. The study of fast neutrons is often based on the neutron-proton elastic scattering reaction. In this case, the ionization induced by the recoil protons in a hydrogenous material constitutes the basic information for the design and development of neutron detectors. Although experimental techniques have continuously improved and refined, so far, proton-recoil track imaging is still weak in laboratory rate environments because of the extremely small detection efficiency. To address this deficiency, we propose a novel recoil-proton track imaging system in which the light deriving from a fast scintillation signal is used to perform a complete reconstruction in space and time of the event. In particular, we report the idea of RIPTIDE (RecoIl Proton Track Imaging DEtector): an innovative system which combines a plastic scintillator coupled to imaging devices, based on CMOS technology, or micro channel plate sensors. The proposed apparatus aims at providing neutron spectrometry capability by stereoscopically imaging the recoil-protons tracks, correlating the spatial information with the time information. RIPTIDE intrinsically enable the online analysis of the ionization track, thus retrieving the neutron direction and energy, without spoiling the overall efficiency of the detection system. Finally, the spatial and topological event reconstruction enables particle discrimination — a crucial requirement for neutron detection — by deducing the specific energy loss along the track.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatsuhiko Ogawa ◽  
Yuho Hirata ◽  
Yusuke Matsuya ◽  
Takeshi Kai

AbstractA novel transport algorithm performing proton track-structure calculations in arbitrary materials was developed. Unlike conventional algorithms, which are based on the dielectric function of the target material, our algorithm uses a total stopping power formula and single-differential cross sections of secondary electron production. The former was used to simulate energy dissipation of incident protons and the latter was used to consider secondary electron production. In this algorithm, the incident proton was transmitted freely in matter until the proton produced a secondary electron. The corresponding ionising energy loss was calculated as the sum of the ionisation energy and the kinetic energy of the secondary electron whereas the non-ionising energy loss was obtained by subtracting the ionising energy loss from the total stopping power. The most remarkable attribute of this model is its applicability to arbitrary materials, i.e. the model utilises the total stopping power and the single-differential cross sections for secondary electron production rather than the material-specific dielectric functions. Benchmarking of the stopping range, radial dose distribution, secondary electron energy spectra in liquid water, and lineal energy in tissue-equivalent gas, against the experimental data taken from literature agreed well. This indicated the accuracy of the present model even for materials other than liquid water. Regarding microscopic energy deposition, this model will be a robust tool for analysing the irradiation effects of cells, semiconductors and detectors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Anna Baratto-Roldán ◽  
Alejandro Bertolet ◽  
Giorgio Baiocco ◽  
Alejandro Carabe ◽  
Miguel Antonio Cortés-Giraldo

The spatial distribution of energy deposition events is an essential aspect in the determination of the radiobiological effects of ionizing radiation at the cellular level. Microdosimetry provides a theoretical framework for the description of these events, and has been used in several studies to address problems such as the characterization of Linear Energy Transfer (LET) and Relative Biological Effectiveness (RBE) of ion beams for proton therapy applications. Microdosimetry quantities and their distributions can be obtained by means of Monte Carlo simulations. In this work, we present a track structure Monte Carlo (MC) application, based on Geant4-DNA, for the computation of microdosimetric distributions of protons in liquid water. This application provides two sampling methods uniform and weighted, for the scoring of the quantities of interest in spherical sites, with diameters ranging from 1 to 10 μm. As an element of novelty, the work shows the approach followed to calculate, without resorting to dedicated simulations, the distribution of energy imparted to the site per electronic collision of the proton, which can be used to obtain the macroscopic dose-averaged LET as proposed by Kellerer. Furthermore, in this work the concept of effective mean chord length is proposed to take into account δ-ray influx and escape in the calculation of macroscopic dose-averaged LET for proton track segments and retrieve the agreement predicted by Kellerer’s formula. Finally, the results obtained demonstrate that our MC application is reliable and computational-efficient to perform calculations of microdosimetric distributions and dose-averaged LET of proton track segments in liquid water.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaowa Wang ◽  
Hailun Pan ◽  
Qinqin Cheng ◽  
Xufei Wang ◽  
Wenzhen Xu

Objective: To investigate dosimetric deviations in scanning protons for Bragg-peak position shifts, which were caused by proton spiral tracks in an ideal uniform field of magnetic resonance (MRI) imaging-guided proton radiotherapy (MRI-IGPRT).Methods: The FLUKA Monte-Carlo (MC) code was used to simulate the spiral tracks of protons penetrating water with initial energies of 70–270 MeV under the influence of field strength of 0.0–3.0 Tesla in commercial MRI systems. Two indexes, lateral shift (marked as WD) perpendicular to the field and a penetration-depth shift (marked as ΔDD) along the beam path, were employed for the Bragg-peak position of spiral proton track analysis. A comparison was performed between MC and classical analytical model to check the simulation results. The shape of the 2D/3D dose distribution of proton spots at the depth of Bragg-Peak was also investigated. The ratio of Gaussian-fit value between longitudinal and transverse major axes was used to indicate the asymmetric index. The skewness of asymmetry was evaluated at various dose levels by the radius ratio of circumscribed and inscribed circles by fitting a semi-ellipse circle of 2D distribution.Results: The maximum of WD deflection is 2.82 cm while the maximum of shortening ΔDD is 0.44 cm for proton at 270 MeV/u under a magnetic field of 3.0 Tesla. The trend of WD and ΔDD from MC simulation was consistent with the analytical model, which means the reverse equation of the analytical model can be applied to determine the proper field strength of the magnet and the initial energy of the proton for the planned dose. The asymmetry of 2D/3D dose distribution under the influence of a magnetic field was increased with higher energy, and the skewness of asymmetry for one proton energy at various dose levels was also increased with a larger radius, i.e., a lower dose level.Conclusions: The trend of the spiral proton track under a uniform magnetic field was obtained in this study using either MC simulation or the analytical model, which can provide an optimized and planned dose of the proton beam in the clinical application of MRI-IGPRT.


2021 ◽  
Author(s):  
Tatsuhiko Ogawa ◽  
Yuho Hirata ◽  
Yusuke Matsuya ◽  
Takeshi Kai

Abstract A novel transport algorithm performing proton track-structure calculations in arbitrary materials was developed. Unlike conventional algorithms, which are based on the dielectric function of the target material, our algorithm uses a total stopping power formula and single-differential cross sections of secondary electron production. The former was used to simulate energy dissipation of incident protons and the latter was used to consider secondary electron production. In this algorithm, the incident proton was transmitted freely in matter until the proton produced a secondary electron. The corresponding ionising energy loss was calculated as the sum of the ionisation energy and the kinetic energy of the secondary electron whereas the non-ionising energy loss was obtained by subtracting the ionising energy loss from the total stopping power. The most remarkable attribute of this model is its applicability to arbitrary materials, i.e. the model utilises the total stopping power and the single-differential cross sections for secondary electron production rather than the material-specific dielectric functions. Benchmarking of the stopping range, radial dose distribution, secondary electron energy spectra in liquid water, and lineal energy in tissue-equivalent gas, against the experimental data taken from literature agreed well. This indicated the accuracy of the present model even for materials other than liquid water. Regarding microscopic energy deposition, this model will be a robust tool for analysing the irradiation effects of cells, semiconductors and detectors.


2020 ◽  
Vol 176 ◽  
pp. 109066
Author(s):  
Thomas Braunroth ◽  
Heidi Nettelbeck ◽  
Sonwabile A. Ngcezu ◽  
Hans Rabus

2020 ◽  
Vol 98 (8) ◽  
pp. 427-433
Author(s):  
Ahmed Alanazi ◽  
Jintana Meesungnoen ◽  
Jean-Paul Jay-Gerin

FLASH radiotherapy is a new irradiation method in which large doses of ionizing radiation are delivered to tumors almost instantly (a few milliseconds), paradoxically sparing healthy tissue while preserving anti-tumor activity. Although this technique is primarily studied in the context of electron and photon therapies, proton delivery at high dose rates can also reduce the adverse side effects on normal cells. So far, no definitive mechanism has been proposed to explain the differences in the responses to radiation between tumor and normal tissues. Given that living cells and tissues consist mainly of water, we set out to study the effects of high dose rates on the radiolysis of water by protons in the energy range of 150 keV – 500 MeV (i.e., for linear energy transfer (LET) values between ∼72.2 and 0.23 keV/μm, respectively) using Monte Carlo simulations. To validate our methodology, however, we, first, report here the results of our calculations of the yields (G values) of the radiolytically produced species, namely the hydrated electron ([Formula: see text]), •OH, H•, H2, and H2O2, for low dose rates. Overall, our simulations agree very well with the experiment. In the presence of oxygen, [Formula: see text] and H• atoms are rapidly converted into superoxide anion or hydroperoxyl radicals, with a well-defined maximum of [Formula: see text] at ∼1 μs. This maximum decreases substantially when going from low-LET 500 MeV to high-LET 150 keV irradiating protons. Differences in the geometry of the proton track structure with increasing LET readily explain this diminution in [Formula: see text] radicals.


2019 ◽  
Vol 46 (9) ◽  
pp. 4184-4192 ◽  
Author(s):  
A. Bertolet ◽  
A. Baratto‐Roldán ◽  
S. Barbieri ◽  
G. Baiocco ◽  
A. Carabe ◽  
...  

2019 ◽  
Vol 9 (10) ◽  
pp. 2052 ◽  
Author(s):  
Andreea Groza ◽  
Mihai Serbanescu ◽  
Bogdan Butoi ◽  
Elena Stancu ◽  
Mihai Straticiuc ◽  
...  

We show that a spectral distribution of laser-accelerated protons can be extracted by analyzing the proton track diameters observed on the front side of a second CR-39 detector arranged in a stack. The correspondence between the proton track diameter and the incident energy on the second detector is established by knowing that protons with energies only higher than 10.5 MeV can fully deposit their energy in the second CR-39 detector. The correlation between the laser-accelerated proton track diameters observed on the front side of the second CR-39 detector and the proton incident energy on the detector stack is also presented. By calculating the proton number stopped in the CR-39 stack, we find out that its dependence on the proton energy in the 1–15 MeV range presents some discontinuities at energies higher than 9 MeV. Thus, we build a calibration curve of the track diameter as a function of the proton incident energy within the 1–9 MeV range, and we infer the associated analytical function as the calculations performed indicate best results for proton spectra within the 1–9 MeV range. The calibration curve is used as a tool to ascertain the pits identified on the surfaces of both CR-39 detectors to proton tracks. The proton tracks spatial distribution analyzed by optical and atomic force microscopy is correlated with the peculiarity of the used targets.


Sign in / Sign up

Export Citation Format

Share Document