scholarly journals Calibrating rhythmic stimulation parameters to individual EEG markers: the consistency of individual alpha frequency in practical lab settings

Author(s):  
Shanice E. W. Janssens ◽  
Alexander T. Sack ◽  
Sanne Ten Oever ◽  
Tom A. Graaf
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Giovanna Mioni ◽  
Adam Shelp ◽  
Candice T Stanfield-Wiswell ◽  
Keri A Gladhill ◽  
Farah Bader ◽  
...  

Abstract Previous studies have linked brain oscillation and timing, with evidence suggesting that alpha oscillations (10 Hz) may serve as a “sample rate” for the visual system. However, direct manipulation of alpha oscillations and time perception has not yet been demonstrated. To test this, we had 18 human subjects perform a time generalization task with visual stimuli. Additionally, we had previously recorded resting-state EEG from each subject and calculated their individual alpha frequency (IAF), estimated as the peak frequency from the mean spectrum over posterior electrodes between 8 and 13 Hz. Participants first learned a standard interval (600 ms) and were then required to judge if a new set of temporal intervals were equal or different compared with that standard. After learning the standard, participants performed this task while receiving occipital transcranial Alternating Current Stimulation (tACS). Crucially, for each subject, tACS was administered at their IAF or at off-peak alpha frequencies (IAF ± 2 Hz). Results demonstrated a linear shift in the psychometric function indicating a modification of perceived duration, such that progressively “faster” alpha stimulation led to longer perceived intervals. These results provide the first evidence that direct manipulations of alpha oscillations can shift perceived time in a manner consistent with a clock speed effect.


2013 ◽  
Vol 50 (6) ◽  
pp. 570-582 ◽  
Author(s):  
Thomas H. Grandy ◽  
Markus Werkle-Bergner ◽  
Christian Chicherio ◽  
Florian Schmiedek ◽  
Martin Lövdén ◽  
...  

NeuroImage ◽  
2008 ◽  
Vol 41 (2) ◽  
pp. 233-242 ◽  
Author(s):  
Stefan P. Koch ◽  
Sophie Koendgen ◽  
Riad Bourayou ◽  
Jens Steinbrink ◽  
Hellmuth Obrig

2006 ◽  
Vol 61 (2) ◽  
pp. 235-243 ◽  
Author(s):  
Christine M. Smit ◽  
Margaret J. Wright ◽  
Narelle K. Hansell ◽  
Gina M. Geffen ◽  
Nicholas G. Martin

2017 ◽  
Vol 30 (6) ◽  
pp. 565-578 ◽  
Author(s):  
Julian Keil ◽  
Daniel Senkowski

Ongoing neural oscillations reflect fluctuations of cortical excitability. A growing body of research has underlined the role of neural oscillations for stimulus processing. Neural oscillations in the alpha band have gained special interest in electrophysiological research on perception. Recent studies proposed the idea that neural oscillations provide temporal windows in which sensory stimuli can be perceptually integrated. This also includes multisensory integration. In the current high-density EEG-study we examined the relationship between the individual alpha frequency (IAF) and cross-modal audiovisual integration in the sound-induced flash illusion (SIFI). In 26 human volunteers we found a negative correlation between the IAF and the SIFI illusion rate. Individuals with a lower IAF showed higher audiovisual illusions. Source analysis suggested an involvement of the visual cortex, especially the calcarine sulcus, for this relationship. Our findings corroborate the notion that the IAF affects the cross-modal integration of auditory on visual stimuli in the SIFI. We integrate our findings with recent observations on the relationship between audiovisual integration and neural oscillations and suggest a multifaceted influence of neural oscillations on multisensory processing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Thorben Hülsdünker ◽  
Andreas Mierau

While the resting-state individual alpha frequency (IAF) is related to the cognitive performance and temporal resolution of visual perception, it remains unclear how it affects the neural correlates of visual perception and reaction processes. This study aimed to unravel the relation between IAF, visual perception, and visuomotor reaction time. One hundred forty-eight (148) participants (28 non-athletes, 39 table tennis players, and 81 badminton players) investigated in three previous studies were considered. During a visuomotor reaction task, the visuomotor reaction time (VMRT) and EMG onset were determined. In addition, a 64-channel EEG system identified the N2, N2-r, and BA6 negativity potentials representing the visual and motor processes related to visuomotor reactions. Resting-state individual alpha frequency (IAF) in visual and motor regions was compared based on sport experience (athletes vs. non-athletes), discipline (badminton vs. table tennis), and reaction performance (fast vs. medium vs. slow reaction time). Further, the differences in the IAF were determined in relation to the speed of neural visual (high vs. medium vs. low N2/N2-r latency) and motor (high vs. medium vs. low BA6 negativity latency). Group comparisons did not reveal any difference in the IAF between athletes and non-athletes (p = 0.352, ηp2 = 0.02) or badminton and table tennis players (p = 0.221, ηp2 = 0.02). Similarly, classification based on the behavioral or neural performance indicators did not reveal any effects on the IAF (p ≥ 0.158, ηp2 ≤ 0.027). IAF was not correlated to any of the behavioral or neural parameters (r ≤ 0.10, p ≥ 0.221). In contrast to behavioral results on cognitive performance and visual temporal resolution, the resting state IAF seemed unrelated to the visual perception and visuomotor reaction speed in simple reaction tasks. Considering the previous results on the correlations between the IAF, cognitive abilities, and temporal sampling of visual information, the results suggest that a higher IAF may facilitate the amount and frequency but not the speed of information transfer.


2021 ◽  
Author(s):  
Yong-Jun Lin ◽  
Lavanya Shukla ◽  
Laura Dugué ◽  
Antoni Valero-Cabré ◽  
Marisa Carrasco

Abstract Parieto-occipital alpha rhythms (8–12 Hz) underlie cortical excitability and influence visual performance. Whether the synchrony of intrinsic alpha rhythms in the occipital cortex can be entrained by transcranial magnetic stimulation (TMS) is an open question. We applied 4-pulse, 10-Hz rhythmic TMS to entrain intrinsic alpha oscillators targeting right V1/V2, and tested four predictions with concurrent electroencephalogram (EEG): (1) progressive enhancement of entrainment across time windows, (2) output frequency specificity, (3) dependence on the intrinsic oscillation phase, and (4) input frequency specificity to individual alpha frequency (IAF) in the neural signatures. Two control conditions with an equal number of pulses and duration were arrhythmic-active and rhythmic-sham stimulation. The results confirmed the first three predictions. Rhythmic TMS bursts significantly entrained local neural activity. Near the stimulation site, evoked oscillation amplitude and inter-trial phase coherence (ITPC) were increased for 2 and 3 cycles, respectively, after the last TMS pulse. Critically, ITPC following entrainment positively correlated with IAF rather than with the degree of similarity between IAF and the input frequency (10 Hz). Thus, we entrained alpha-band activity in occipital cortex for ~ 3 cycles (~ 300 ms), and IAF predicts the strength of entrained occipital alpha phase synchrony indexed by ITPC.


Sign in / Sign up

Export Citation Format

Share Document