isotope partitioning
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Claire J. Nelson ◽  
Andrew D. Jacobson ◽  
Gabriella D. Kitch ◽  
Tobias B. Weisenberger

AbstractZeolites are secondary tectosilicates produced during the hydrothermal alteration of basalt. The minerals serve as major sinks of calcium, which readily exchanges with calcium from surrounding groundwater. However, no studies have specifically investigated the calcium isotope geochemistry (δ44/40Ca) of zeolites. Here, we report δ44/40Ca values for zeolites from East Iceland, where the minerals form during progressive burial of the lava pile. The zeolites show a δ44/40Ca range of 1.4‰, which strongly correlates with average mineral calcium-oxygen bond lengths. As this correlation appears most consistent with equilibrium isotope partitioning, our findings point toward developing a novel geothermometer for studying low-grade basalt metamorphism. The results also have significance for using calcium isotopes to trace basalt weathering, including its role in long-term climate regulation and application in carbon capture and storage, a leading strategy for mitigating anthropogenic climate change.


2021 ◽  
Author(s):  
◽  
Tianyi Huang

Chromium (Cr) isotopes have shown great potential as a paleo-redox proxy to trace the redox conditions of ancient oceans and atmosphere. However, its cycling in modern environments is poorly constrained. In my thesis, I attempt to fill in the gap of our understanding of chromium cycling in the modern ocean, with a focus on the redox processes in global oxygen deficient zones (ODZs). Firstly, we developed a method to analyze Cr isotopes of different Cr redox species. Tests on processing conditions demonstrated its robustness in obtaining accurate Cr isotope data. It is applicable to both frozen and fresh samples. This method allows us to investigate the redox cycling of Cr that is hard to unravel by existing total Cr methods. Secondly, in the Eastern Tropical North Pacific (ETNP), Eastern Tropical South Pacific (ETSP) and Arabian Sea ODZs, their total dissolved Cr profiles show preferential reduction of isotopically light Cr(VI) to Cr(III), which is scavenged and exported to deeper oceans. Applying our new method to ETNP and ETSP ODZ seawater samples, we observed Cr(VI) reduction in both ODZs with a similar fractionation factor. This indicates similar mechanisms may be controlling Cr(VI) reduction in the two ODZs. Cr(III) maximum coincides with Fe(II) and secondary nitrite maximums in the upper core of both ODZs. Shipboard incubations with spiked Fe(II) showed fast Cr(VI) reduction occurring in the ETNP ODZ. But neither Fe(II) nor microbes were reducing Cr(VI) directly. Thirdly, we calculated the isotope effects of Cr scavenging in the ETNP and ETSP ODZs. Thetwo ODZs show a similar isotope partitioning during Cr scavenging. And spatial variability is observed in the ETNP ODZ. Our calculated scavenged Cr isotope ratio is lighter than that of the total dissolved Cr from the same depth. It is also comparable to that of reducing or anoxic sediments, which implies that Cr isotopes can be used as an archive for local redox conditions.


Author(s):  
Marta Boito ◽  
Paola Iacumin ◽  
Mattia Rossi ◽  
Nives Ogrinc ◽  
Giampiero Venturelli

2019 ◽  
Vol 16 (9) ◽  
pp. 1937-1953 ◽  
Author(s):  
Franziska Koebsch ◽  
Matthias Winkel ◽  
Susanne Liebner ◽  
Bo Liu ◽  
Julia Westphal ◽  
...  

Abstract. In natural coastal wetlands, high supplies of marine sulfate suppress methanogenesis. Coastal wetlands are, however, often subject to disturbance by diking and drainage for agricultural use and can turn to potent methane sources when rewetted for remediation. This suggests that preceding land use measures can suspend the sulfate-related methane suppressing mechanisms. Here, we unravel the hydrological relocation and biogeochemical S and C transformation processes that induced high methane emissions in a disturbed and rewetted peatland despite former brackish impact. The underlying processes were investigated along a transect of increasing distance to the coastline using a combination of concentration patterns, stable isotope partitioning, and analysis of the microbial community structure. We found that diking and freshwater rewetting caused a distinct freshening and an efficient depletion of the brackish sulfate reservoir by dissimilatory sulfate reduction (DSR). Despite some legacy effects of brackish impact expressed as high amounts of sedimentary S and elevated electrical conductivities, contemporary metabolic processes operated mainly under sulfate-limited conditions. This opened up favorable conditions for the establishment of a prospering methanogenic community in the top 30–40 cm of peat, the structure and physiology of which resemble those of terrestrial organic-rich environments. Locally, high amounts of sulfate persisted in deeper peat layers through the inhibition of DSR, probably by competitive electron acceptors of terrestrial origin, for example Fe(III). However, as sulfate occurred only in peat layers below 30–40 cm, it did not interfere with high methane emissions on an ecosystem scale. Our results indicate that the climate effect of disturbed and remediated coastal wetlands cannot simply be derived by analogy with their natural counterparts. From a greenhouse gas perspective, the re-exposure of diked wetlands to natural coastal dynamics would literally open up the floodgates for a replenishment of the marine sulfate pool and therefore constitute an efficient measure to reduce methane emissions.


2018 ◽  
Author(s):  
Franziska Koebsch ◽  
Matthias Winkel ◽  
Susanne Liebner ◽  
Bo Liu ◽  
Julia Westphal ◽  
...  

Abstract. In natural coastal wetlands, high supplies of marine sulfate suppress methanogenesis. Coastal wetlands are, however, often subject to disturbance by dyking and drainage for agricultural use and it has been shown that they can turn to potent methane sources when rewetted for remediation, suggesting that the sulfate-related methane suppressing mechanisms were suspended by the preceding land use measures. Here, we unravel the hydrological relocation and biogeochemical S and C transformation processes that induced high methane emissions in a disturbed and rewetted peatland despite former brackish impact. The underlying processes were investigated along a transect of increasing distance to the coastline using a combination of concentration patterns, stable isotope partitioning and analysis of the microbial community structure. We found that dyking and freshwater rewetting caused a distinct freshening and an efficient depletion of the brackish sulfate reservoir by dissimilatory sulfate reduction (DSR). Despite some legacy effects of brackish impact expressed as high amounts of sedimentary S and elevated electrical conductivities, contemporary metabolic processes operated mainly under sulfate-limited conditions. This opened up favorable conditions for the establishment of a prospering methanogenic community in the top 30–40 cm of peat, the structure and physiology of which resembles those of terrestrial organic-rich environments. Locally, high amounts of sulfate persisted in deeper peat layers through the suppression of DSR, probably by competitive electron acceptors of terrestrial origin, for example Fe(III), but did not interfere with high methane emissions on ecosystem scale. Our results indicate that the climate effect of disturbed and remediated coastal wetlands cannot simply be derived by analogy with their natural counterparts. From a greenhouse gas perspective, the re-exposure of dyked wetlands to natural coastal dynamics would literally open up the floodgates for a replenishment of the marine sulfate pool and constitute an efficient measure to reduce methane emissions.


2016 ◽  
Author(s):  
Max Giannetta ◽  
◽  
Robert A. Sanford ◽  
Jennifer L. Druhan

Sign in / Sign up

Export Citation Format

Share Document