manufacturing variation
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Qutaiba M. Saleh ◽  
Edward C. Hensel ◽  
Nathan C. Eddingsaas ◽  
Risa J. Robinson

This work investigated the effects of manufacturing variations, including coil resistance and initial pod mass, on coil lifetime and aerosol generation of Vuse ALTO pods. Random samples of pods were used until failure (where e-liquid was consumed, and coil resistance increased to high value indicating a coil break). Initial coil resistance, initial pod mass, and e-liquid net mass ranged between 0.89 to 1.14 [Ω], 6.48 to 6.61 [g], and 1.88 to 2.00 [g] respectively. Coil lifetime was µ (mean) = 158, σ (standard deviation) = 21.5 puffs. Total mass of e-liquid consumed until coil failure was µ = 1.93, σ = 0.035 [g]. TPM yield per puff of all test pods for the first session (brand new pods) was µ = 0.0123, σ = 0.0003 [g]. Coil lifetime and TPM yield per puff were not correlated with either variation in initial coil resistance or variation in initial pod mass. The absence of e-liquid in the pod is an important factor in causing coil failure. Small bits of the degraded coil could be potentially introduced to the aerosol. This work suggests that further work is required to investigate the effect of e-liquid composition on coil lifetime and TPM yield per puff.


2021 ◽  
Author(s):  
María Fátima Moreno-Pérez ◽  
Rafael Baeza-Cano ◽  
José Roldán-Cañas ◽  
Gema Cánovas-Fernández ◽  
Rafael Reyes-Requena

<p>In the present work, a selection of drip irrigation emitters used in greenhouse horticultural crops in the province of Almeria, Spain, were hydraulically evaluated, studying their hydraulic behavior and whether they meet with quality standards. Since manufacturers are offering lower flow emitters less spaced, all drippers tested are low flow. The hydraulic characterization will indicate the discharge and emission uniformity of the manufactured emitters, which are the fundamental parameters for the study of water use efficiency in drip irrigation. In the province of Almeria, water is a limiting factor due to the existence of a semi-arid climate, and, in addition, these limited water resources are used by intensive agriculture which causes a high consumption of these resources.</p><p>In total, 21 emitters have been evaluated, including all possible drippers according to their type of insertion (inline, pinched or online and interlinea), hydraulic behaviour (non-compensating and self-compensating) and, within the compensating ones, (anti-draining and non anti-draining). Its flow rates are between 1 and 2.4 l/h, except for a non-compensating interlina emitter of 3.8 l/h.</p><p>To carry out these tests, the criteria of the ISO 9261:2004 standard have been followed, calculating the coefficient of manufacturing variation and the emitter discharge equation on a test bench located in the La Mojonera Centre (Almeria) of the IFAPA (Andalusian Institute of Agricultural and Fishing Research and Training).</p><p>The results of this study show very good behavior in most of the emitters, and, as a consequence, a low coefficient of manufacturing variation has been obtained. The discharge equation obtained in the laboratory shows a low emisión exponent in the self-compensating emitters, being, therefore, the compensation of the pressures very high in all cases. No statistically significant differences have been found between self-compensating and non-compensating emitters by analysing their manufacturing variation coefficients. Nor have any significant differences been found between self-compensating emitters according to whether they are anti-draining or non-anti-draining, considering also the coefficient of variation. In anti-draining emitters, all closing pressures are not satisfied according to the standard, and are exceeded with very high values. The opening pressure is met for two of the four emitters, and one of those that does not meet it does so with a very large value.</p>


Author(s):  
Qutaiba M. Saleh ◽  
Edward C. Hensel ◽  
Nathan C. Eddingsaas ◽  
Risa J. Robinson

This work investigated the effects of manufacturing variations including coil resistance, initial pod mass, and e-liquid color on coil lifetime and aerosol generation of Vuse ALTO pods. Random samples of pods were used until failure (where e-liquid was consumed, and coil resistance increased to high value indicating a coil break). Initial coil resistance, initial pod mass, and e-liquid net mass ranged between 0.89 to 1.14 [], 6.48 to 6.61 [g], and 1.88 to 2.00 [g] respectively. Coil lifetime with light color e-liquid was (mean) = 149, (standard deviation) = 10.7 puffs while pods with dark color e-liquid was = 185, = 22.7 puffs with a difference of ~36 puffs (p <0.001). Total mass of e-liquid consumed until coil failure was = 1.93, = 0.035 [g]. TPM yield per puff of all test pods for the first session (brand new pods) was = 0.0123, = 0.0003 [g]. During usage, TPM yield per puff of pods with light color e-liquid was relatively steady while it was continuously decreasing for pods with dark e-liquid. Coil lifetime and TPM yield per puff were not correlated with either variation in initial coil resistance or variation in initial pod mass. The absence of e-liquid in the pod is an important factor in causing coil failure. Small bits of the degraded coil could be potentially introduced to the aerosol. There is a potential correlation of e-liquid color with both coil lifetime and TPM yield per puff. Change of e-liquid color might have been a result of oxidation which changed some nicotine into nicotyrine.


2021 ◽  
Vol 231 ◽  
pp. 03004
Author(s):  
Heping Peng ◽  
Zhuoqun Peng

The objective of this paper is to explore the evaluation method of manufacturing process to verify its effectiveness based on the limitation of the variations which occur in multi-station machining processes. Firstly, the manufacturing process of a mechanical part is considered as a mechanism mainly consisted of machine-tool, part-holders, machined part, and cutting tools; And small displacement torsors (SDTs) are applied to describe all deviations in the manufacturing process, including the variation deviations of the machined surfaces of a part with regards to their nominal positions, the gap deviations associated to each joint between two contact surfaces, etc; Then, the 3D manufacturing variation model is established based on the relations between the machining feature variations and the functional tolerance requirements to realize the evaluation of manufacturing process. Finally, an application example is given to illustrate the proposed method.


Author(s):  
Leonardo Urbiola-Soto

Abstract A systematic approach of a Tilting Pad Journal Bearing (TPJB) as a whole tolerance stack up assembly is presented. Normal component variation within actual design tolerances is considered. The vector loop is expanded via Taylor series for sensitive analysis. The bearing shell and tilting pad machined radiuses for each pad are found to be the more influential dimensional characteristics on the assembled clearance and preload. A leading edge relief was used to avoid unloaded pads fluttering, while maintaining a satisfactory bearing assembled clearance in the loaded pads throughout the resultant preload variation. Pivot flexibility and preload loss due to pad wear in service life were considered in the preload variation assessment. Surface response multivariate multi-response models were built for a 4-pad TPJB under Load Between Pad (LBP) and Load On Pad (LOP) configurations. Desirability functions rendered the maximum and minimum rotordynamic coefficient and tribological parameter responses across speed. The LOP configuration showed more variation in the direct rotordynamic coefficients, while the LBP configuration indicated more sensitive cross-coupled coefficients with strong sign change in some cases. Among the tribological performance parameters, the eccentricity and pad maximum pressure were more affected, followed by the minimum film thickness, and weakly by the power loss, and oil film temperature. The dispersion of the tribology parameters under normal manufacturing variation is found of importance. Four, and seven extreme geometrical state cases were identified for the LBP, and LOP bearing configurations, respectively.


Author(s):  
Shahrokh Shahpar

Abstract To improve the quality of a manufactured part in industry, a variety of techniques are used to scan a built geometry to bring it back to the physics based simulation world to assess its true performance. There are various laser and structured light measurement techniques (GOM), Computed Tomography (CT) scan as well as touch-point probes in the form of CMM cloud of data that can provide an estimate for the shape of an object. However, there are many challenges on how to construct the digital geometry from the scan in order not to lose any deviations and defects and yet being able to mesh a solid manifold for simulation purposes. In this paper, a novel method based on multi-layered Artificial Intelligence (AI) is presented to produce a meaningful engineering design space to perturb the design-intent geometry to match the manufactured data cloud. The inverse mapping techniques has been applied to a range of real turbomachinery components to demonstrate its flexibility and robustness, even when the original GOM is not perfect. A case study is presented based on a real modern jet engine bypass outlet guide vane (BOGV) to show how constructing and using its digital twin and high-fidelity simulation can save a significant cost for a fleet of engines/aircraft.


Sign in / Sign up

Export Citation Format

Share Document