electrotactile stimulation
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 33 (5) ◽  
pp. 1043-1050
Author(s):  
Akimu Hirai ◽  
Masaya Nakayama ◽  
Takefumi Ogawa ◽  
◽  

Presenting objects’ texture sensations by electrical stimulation has been drawing greater attention as a means to improve the augmented reality experiences. To reproduce the texture sensations of real objects in detail, tactile perceptions of their complex surface shapes must be translated as electrical stimulation. Many conventional studies on presenting vibrational sensations by electrical stimulations have used single pulse waveforms, limiting the vibrational sensations that can be presented by electrical stimulations. In this paper, therefore, we propose the local peak method, in which pulse waveforms are configured on the objects’ surface structures. We have experimentally proved that the proposed local peak method can present sensations that are more akin to touching physical objects than pulse waveforms of single intervals in the case of presented objects having complex surface structures.


Author(s):  
Martin A. Garenfeld ◽  
Nikola Jorgovanovic ◽  
Vojin Ilic ◽  
Matija Strbac ◽  
Milica Isakovic ◽  
...  

Abstract Background Despite important advancements in control and mechatronics of myoelectric prostheses, the communication between the user and his/her bionic limb is still unidirectional, as these systems do not provide somatosensory feedback. Electrotactile stimulation is an attractive technology to close the control loop since it allows flexible modulation of multiple parameters and compact interface design via multi-pad electrodes. However, the stimulation interferes with the recording of myoelectric signals and this can be detrimental to control. Methods We present a novel compact solution for simultaneous recording and stimulation through dynamic blanking of stimulation artefacts. To test the system, a feedback coding scheme communicating wrist rotation and hand aperture was developed specifically to stress the myoelectric control while still providing meaningful information to the subjects. Ten subjects participated in an experiment, where the quality of closed-loop myoelectric control was assessed by controlling a cursor in a two degrees of freedom target-reaching task. The benchmark performance with visual feedback was compared to that achieved by combining visual feedback and electrotactile stimulation as well as by using electrotactile feedback only. Results There was no significant difference in performance between visual and combined feedback condition with regards to successfully reached targets, time to reach a target, path efficiency and the number of overshoots. Therefore, the quality of myoelectric control was preserved in spite of the stimulation. As expected, the tactile condition was significantly poorer in completion rate (100/4% and 78/25% for combined and tactile condition, respectively) and time to reach a target (9/2 s and 13/4 s for combined and tactile condition, respectively). However, the performance in the tactile condition was still good, with no significant difference in path efficiency (38/8%) and the number of overshoots (0.5/0.4 overshoots), indicating that the stimulation was meaningful for the subjects and useful for closed-loop control. Conclusions Overall, the results demonstrated that the developed system can provide robust closed-loop control using electrotactile stimulation. The system supports different encoding schemes and allows placing the recording and stimulation electrodes next to each other. This is an important step towards an integrated solution where the developed unit will be embedded into a prosthetic socket.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
David Achanccaray ◽  
Shin-Ichi Izumi ◽  
Mitsuhiro Hayashibe

In the aging society, the number of people suffering from vascular disorders is rapidly increasing and has become a social problem. The death rate due to stroke, which is the second leading cause of global mortality, has increased by 40% in the last two decades. Stroke can also cause paralysis. Of late, brain-computer interfaces (BCIs) have been garnering attention in the rehabilitation field as assistive technology. A BCI for the motor rehabilitation of patients with paralysis promotes neural plasticity, when subjects perform motor imagery (MI). Feedback, such as visual and proprioceptive, influences brain rhythm modulation to contribute to MI learning and motor function restoration. Also, virtual reality (VR) can provide powerful graphical options to enhance feedback visualization. This work aimed to improve immersive VR-BCI based on hand MI, using visual-electrotactile stimulation feedback instead of visual feedback. The MI tasks include grasping, flexion/extension, and their random combination. Moreover, the subjects answered a system perception questionnaire after the experiments. The proposed system was evaluated with twenty able-bodied subjects. Visual-electrotactile feedback improved the mean classification accuracy for the grasping (93.00%  ±  3.50%) and flexion/extension (95.00%  ±  5.27%) MI tasks. Additionally, the subjects achieved an acceptable mean classification accuracy (maximum of 86.5%  ±  5.80%) for the random MI task, which required more concentration. The proprioceptive feedback maintained lower mean power spectral density in all channels and higher attention levels than those of visual feedback during the test trials for the grasping and flexion/extension MI tasks. Also, this feedback generated greater relative power in the μ -band for the premotor cortex, which indicated better MI preparation. Thus, electrotactile stimulation along with visual feedback enhanced the immersive VR-BCI classification accuracy by 5.5% and 4.5% for the grasping and flexion/extension MI tasks, respectively, retained the subject’s attention, and eased MI better than visual feedback alone.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jian Dong ◽  
Winnie Jensen ◽  
Bo Geng ◽  
Ernest Nlandu Kamavuako ◽  
Strahinja Dosen

AimLimb loss is a dramatic event with a devastating impact on a person’s quality of life. Prostheses have been used to restore lost motor abilities and cosmetic appearance. Closing the loop between the prosthesis and the amputee by providing somatosensory feedback to the user might improve the performance, confidence of the amputee, and embodiment of the prosthesis. Recently, a minimally invasive method, in which the electrodes are placed subdermally, was presented and psychometrically evaluated. The present study aimed to assess the quality of online control with subdermal stimulation and compare it to that achieved using surface stimulation (common benchmark) as well as to investigate the impact of training on the two modalities.MethodsTen able-bodied subjects performed a PC-based compensatory tracking task. The subjects employed a joystick to track a predefined pseudorandom trajectory using feedback on the momentary tracking error, which was conveyed via surface and subdermal electrotactile stimulation. The tracking performance was evaluated using the correlation coefficient (CORR), root mean square error (RMSE), and time delay between reference and generated trajectories.ResultsBoth stimulation modalities resulted in good closed-loop control, and surface stimulation outperformed the subdermal approach. There was significant difference in CORR (86 vs 77%) and RMSE (0.23 vs 0.31) between surface and subdermal stimulation (all p < 0.05). The RMSE of the subdermal stimulation decreased significantly in the first few trials.ConclusionSubdermal stimulation is a viable method to provide tactile feedback. The quality of online control is, however, somewhat worse compared to that achieved using surface stimulation. Nevertheless, due to minimal invasiveness, compactness, and power efficiency, the subdermal interface could be an attractive solution for the functional application in sensate prostheses.


Author(s):  
Matija Štrbac ◽  
Milica Isaković ◽  
Jovana Malešević ◽  
Gorana Marković ◽  
Strahinja Došen ◽  
...  

Author(s):  
Sara Nataletti ◽  
Fabrizio Leo ◽  
Lucia Seminara ◽  
Carlo Trompetto ◽  
Maurizio Valle ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 393-403 ◽  
Author(s):  
Lucia Seminara ◽  
Hoda Fares ◽  
Marta Franceschi ◽  
Maurizio Valle ◽  
Matija Strbac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document