scholarly journals A new percussion hammer mechanism for a borehole deployable subglacial sediment corer

2020 ◽  
pp. 1-5
Author(s):  
Keith Makinson ◽  
Daniel Ashurst ◽  
Paul G. D. Anker ◽  
James A. Smith ◽  
Dominic A. Hodgson ◽  
...  

Abstract Subglacial sediments have the potential to reveal information about the controls on glacier flow, changes in ice-sheet history and characterise life in those environments. Retrieving sediments from beneath the ice, through hot water drilled access holes at remote field locations, present many challenges. Motivated by the need to minimise weight, corer diameter and simplify assembly and operation, British Antarctic Survey, in collaboration with UWITEC, developed a simple mechanical percussion corer. At depths over 1000 m however, manual operation of the percussion hammer is compromised by the lack of clear operator feedback at the surface. To address this, we present a new auto-release-recovery percussion hammer mechanism that makes coring operations depth independent and improves hammer efficiency. Using a single rope tether for both the corer and hammer operation, this modified percussion corer is relatively simple to operate, easy to maintain, and has successfully operated at a depth of >2130 m.

Science ◽  
2018 ◽  
Vol 361 (6399) ◽  
pp. 273-277 ◽  
Author(s):  
L. A. Stearns ◽  
C. J. van der Veen

The largest uncertainty in the ice sheet models used to predict future sea level rise originates from our limited understanding of processes at the ice/bed interface. Near glacier termini, where basal sliding controls ice flow, most predictive ice sheet models use a parameterization of sliding that has been theoretically derived for glacier flow over a hard bed. We find that this sliding relation does not apply to the 140 Greenland glaciers that we analyzed. There is no relationship between basal sliding and frictional stress at the glacier bed, contrary to theoretical predictions. There is a strong relationship between sliding speed and net pressure at the glacier bed. This latter finding is in agreement with earlier observations of mountain glaciers that have been largely overlooked by the glaciological community.


1989 ◽  
Vol 13 ◽  
pp. 257-261 ◽  
Author(s):  
H.H. Thomsen ◽  
L. Thorning ◽  
O.B. Olesen

Glaciological investigations were carried out on the Greenland ice sheet to help develop plans for a hydro-electric power station to supply energy to Ilulissat/Jakobshavn. The investigations required research on supraglacial and subglacial melt-water drainage in order to delineate water-drainage basins. This involved repeated detailed photogrammetric mapping, radio echo-sounding, hot-water drilling, and mathematical modelling of subglacial drainage. Repeated mappings combine to show an overall stability in the supraglacial drainage pattern, while model calculations for the subglacial conditions show a limited sensitivity in the predicted drainage areas to changes in hydraulic conditions. The investigations provide the basis for setting safer limits for planning hydro-electric power in the area, and give a general understanding of glacier hydrology for a continuous ice cover such as the Greenland ice sheet.


2011 ◽  
Vol 57 (204) ◽  
pp. 609-620 ◽  
Author(s):  
M.L. Andersen ◽  
M. Nettles ◽  
P. Elosegui ◽  
T.B. Larsen ◽  
G.S. Hamilton ◽  
...  

AbstractThe flow speed of Greenland outlet glaciers is governed by several factors, the relative importance of which is poorly understood. The delivery of surface-generated meltwater to the bed of alpine glaciers has been shown to influence glacier flow speed when the volume of water is sufficient to increase basal fluid pressure and hence basal lubrication. While this effect has also been demonstrated on the Greenland ice-sheet margin, little is known about the influence of surface melting on the large, marine-terminating outlet glaciers that drain the ice sheet. We use a validated model of meltwater input and GPS-derived surface velocities to quantify the sensitivity of glacier flow speed to changes in surface melt at Helheim Glacier during two summer seasons (2007–08). Our observations span ∼55 days near the middle of each melt season. We find that relative changes in glacier speed due to meltwater input are small, with variations of ∼45% in melt producing changes in velocity of ∼2–4%. These velocity variations are, however, of similar absolute magnitude to those observed at smaller glaciers and on the ice-sheet margin. We find that the glacier’s sensitivity to variations in meltwater input decreases approximately exponentially with distance from the calving front. Sensitivity to melt varies with time, but generally increases as the melt season progresses. We interpret the time-varying sensitivity of glacier flow to meltwater input as resulting from changes in subglacial hydraulic routing caused by the changing volume of meltwater input.


2021 ◽  
pp. M58-2021-17
Author(s):  
David J. A. Evans ◽  
Ian S. Evans

AbstractFrom 1965-2000 glacial geomorphology became increasingly specialised and developed significantly due to technological improvements, particularly in remote sensing, surveying and field-based glaciological process studies. The better understanding of basal thermal regimes in ice sheets and glaciers led to the development of concepts such as spatial and temporal migration of ice divides in dynamic ice sheets that could overprint subglacial landform assemblages, debris entrainment processes related to polythermal glacier systems, and glacier and ice sheet beds composed of cold and warm based mosaics. Process observations at the ice-bed interface led to the discovery of the third glacier flow mechanism, substrate deformation, which provided the impetus to reconstruct the genesis of subglacial bedforms such as drumlins and to evaluate the origins and potential flow law for till. Numerical evaluations of glacial erosion led to a better understanding of abrasion and quarrying as well as the erection of genetic models and erosion rates for larger scale features such as U-shaped valleys and cirques. Linkages were made between debris transport pathways and moraine construction in supraglacial environments, with the role of glacier structure being linked to specific landforms, such as medial, lateral, hummocky and ice-cored moraines as well as rock glaciers. Our appreciation of the erosional and depositional impacts of glacifluvial systems was enhanced significantly with the advent of process observations on the hydrology of modern glaciers as well as the final vindication of J.H. Bretz and his proposed jökulhlaup origins of the Channelled Scablands and the Missoula Floods. In addition to the increasing numbers of studies at modern glacier snouts, the embracing of sedimentology by glacial geomorphologists was to result in significant developments in understanding the process-form regimes of subglacial, marginal and proglacial landforms, particularly the recognition of landform continua and hybrids. Advances resulting from this included the recognition of different modes of moraine and glacitectonic thrust mass development, lithofacies models of the varied glacifluvial depositional environments, and the initial expansion of the sediments and depo-centres of glacimarine settings, the latter being the result of glacial research taking to submersibles and ice-strengthened ships for the first time. A similarly new frontier was the expansion of research on the increasingly higher resolution images returning from Mars, where extraterrestrial glaciations were recognised based on comparisons with Earth analogues. Holistic appreciations of glaciation signatures using landform assemblages were developed, initially as process-form models and later as glacial landsystems, providing an ever expanding set of templates for reconstructing palaeoglaciology in the wide variety of topographic and environmental settings, which also acknowledge spatial and temporal change in glacier and ice sheet systems.


2020 ◽  
Author(s):  
Jamey Stutz ◽  
Andrew Mackintosh ◽  
Kevin Norton ◽  
Ross Whitmore ◽  
Carlo Baroni ◽  
...  

Abstract. Quantitative satellite observations provide a comprehensive assessment of ice sheet mass loss over the last four decades, but limited insights into long-term drivers of ice sheet change. Geological records can extend the observational record and aid our understanding of ice sheet–climate interactions. Here we present the first millennial-scale reconstruction of David Glacier, the largest East Antarctic outlet glacier in Victoria Land. We use surface exposure dating of glacial erratics deposited on nunataks to reconstruct changes in ice surface elevation through time. We then use numerical modelling experiments to determine the drivers of glacial thinning. Thinning profiles derived from 45 10Be and 3He surface exposure ages show that David Glacier experienced rapid thinning up to 2 m/yr during the mid-Holocene (~ 6,500 years ago). Thinning stabilised at 6 kyr, suggesting initial formation of the Drygalski Ice Tongue at this time. Our work, along with terrestrial cosmogenic nuclide records from adjacent glaciers, shows simultaneous glacier thinning in this sector of the Transantarctic Mountains occurred ~ 3 kyr after the retreat of marine-based grounded ice in the western Ross Embayment. The timing and rapidity of the reconstructed thinning at David Glacier is similar to reconstructions in the Amundsen and Weddell embayments. In order to identify the potential causes of these rapid changes along the David Glacier, we use a glacier flow line model designed for calving glaciers and compare modelled results against our geological data. We show that glacier thinning and marine-based grounding line retreat is initiated by interactions between enhanced sub-ice shelf melting and reduced lateral buttressing, leading to Marine Ice Sheet Instability. Such rapid glacier thinning events are not captured in continental or sector-scale numerical modelling reconstructions for this period. Together, our chronology and modelling suggest a ~ 2,000-year period of dynamic thinning in the recent geological past.


1979 ◽  
Vol 24 (90) ◽  
pp. 513 ◽  
Author(s):  
S. Overgaard ◽  
K. Rasmussen

Abstract In order to test the theory of glacier flow over bedrock undulations presented by S. J. Johnsen, K. Rasmussen, and N.Reeh in the accompanying abstract, data from the E.G.I.G. and the Dye-3 flow lines on the Greenland ice sheet have been analysed. The data comprise surface profiles measured by conventional techniques, and ice thicknesses and depths of internal isochronic layers obtained by the Technical University of Denmark by means of radio echo-soundings.


2021 ◽  
Author(s):  
Johannes Feldmann ◽  
Anders Levermann

<p>The time scales of the flow and retreat of the outlet glaciers draining Greenland and Antarctica and their potential instabilities are arguably the largest uncertainty in future sea-level projections. The associated stress and velocity fields are highly complex. Here we derive an exact scaling law from first principles that shows that the time scale of outlet-glacier flow is related to the inverse of 1) the fourth power of the width-to-length ratio of its topographic confinement, 2) the third power of the confinement depth and 3) the temperature-dependent ice softness. We show that idealized numerical simulations of marine ice-sheet instabilities (MISI) as found in Antarctica follow this theoretical prediction. In a further step we apply the scaling law to observations of different MISI-prone Antarctic outlets to compare their potential instability time scales. The simple scaling relation incorporates the full complexity of the ice stress field of a fast outlet glacier similar to the predictive power of the thermodynamic equations of an ideal gas. In quantifying the non-linear influence of glacier geometry and temperature on the ice dynamicsscaling law allows to investigate similar ice flow under future global warming.</p>


1988 ◽  
Vol 11 ◽  
pp. 206-207 ◽  
Author(s):  
J. G. Paren ◽  
N. A. Richardson

Following international recommendations (UNESCO / IASH 1969), the decision was made to determine the surface profile of a number of glaciers in Palmer Land and Alexander Island. By comparison with the ice sheet elsewhere on the continent, the chosen glaciers were small and hence more sensitive to the effect of climate over the last few decades. Six profiles were established between 1972 and 1976 and they were re-levelled in the 1985-86 summer. The profiles are between 0.5 and 4.5 km long and are terminated, at one end at least, by a bench mark established on rock. The profiles were re-measured close to the calendar date of the original survey so that recent trends would not be masked by the annual cycle of accumulation, densification and ablation. Five of the six profiles show that the ice sheet has thickened in the last 10-15 years, albeit at a slow rate. Changes in four profiles on Alexander Island within 300 m of sea-level range from a thickening of 66 mm a−1 to a thinning of 83 mm a−1; on average the sites show a thickening of just 6 mm a year. This is similar to the thickening rate of 5 mm a−1 which was found for a cold site on the spine of the Antarctic Peninsula at 1600 m above sea-level. The greatest change was found at an intermediate elevation (500 m). In a snow-field between two parallel mountain groups in the Batterbee Mountains of Palmer Land, thickening averaged 165 mm a−1. To put these values into perspective, in the absence of glacier flow and summer melting, the glaciers would thicken by up to about 500 mm each year as a result of the accumulation of snow. Except in the Batterbee Mountains, we find that glacier flow is in close balance with present climate, despite the general warming trend that has occurred in the Antarctic Peninsula region over the past 30 years.


2010 ◽  
Vol 56 (197) ◽  
pp. 415-430 ◽  
Author(s):  
Ian Joughin ◽  
Ben E. Smith ◽  
Ian M. Howat ◽  
Ted Scambos ◽  
Twila Moon

AbstractUsing RADARSAT synthetic aperture radar data, we have mapped the flow velocity over much of the Greenland ice sheet for the winters of 2000/01 and 2005/06. These maps provide a detailed view of the ice-sheet flow, including that of the hundreds of glaciers draining the interior. The focused patterns of flow at the coast suggest a strong influence of bedrock topography. Differences between our two maps confirm numerous early observations of accelerated outlet glacier flow as well as revealing previously unrecognized changes. The overall pattern is one of speed-up accompanied by terminus retreat, but there are also several instances of surge behavior and a few cases of glacier slowdown. Comprehensive mappings such as these, at regular intervals, provide an important new observational capability for understanding ice-sheet variability.


Sign in / Sign up

Export Citation Format

Share Document