scholarly journals Ice drilling on Skytrain Ice Rise and Sherman Island, Antarctica

2021 ◽  
pp. 1-13
Author(s):  
Robert Mulvaney ◽  
Julius Rix ◽  
Scott Polfrey ◽  
Mackenzie Grieman ◽  
Carlos Martìn ◽  
...  

Abstract To understand the long-term climate and glaciological evolution of the ice sheet in the region bordering the Weddell Sea, the British Antarctic Survey has undertaken a series of successful ice core projects drilling to bedrock on Berkner Island, James Ross Island and the Fletcher Promontory. A new project, WACSWAIN, seeks to increase this knowledge by further drilling to bedrock on two further ice rises in this region. In a single-season project, an ice core was recovered to bedrock at 651 m on Skytrain Ice Rise using an ice core drill in a fluid-filled borehole. In a second season, a rapid access drill was used to recover ice chips to 323 m on Sherman Island in a dry borehole, though failing to reach the bedrock which was at an estimated depth of 428 m.

1990 ◽  
Vol 14 ◽  
pp. 353-353
Author(s):  
D.A. Peel ◽  
R. Mulvaney

A stable isotope record extending back to 1795 is now available from Dolleman Island (70°35.2′S, 60°55.5′W), a small ice rise on the Weddell Sea coast of Antarctic Peninsula. An accurate chronology has been achieved by combined stratigraphic analysis of clear seasonal cycles in δ18O and excess SO4. Previous work (Peel and others, 1988) has shown that, since 1947, there is generally a satisfactory correlation between interannual variations in δ18O and air temperature (T) as recorded at weather stations in various parts of the region, suggesting that the derived δ18O/T ratio may be used to reconstruct air temperatures for the earlier period.Taken together with previously-reported data (Aristarain and others, 1986) for an ice core from James Ross Island it is now possible to propose a regional climatic signal for the Weddell Sea coastal sector of the region. The most striking feature is a broad maximum in δ18O for the mid-19th century, implying decadal average temperature at least as high as the present. This contrasts with available evidence from elsewhere in the southern hemisphere which suggest that this period was cooler than today. Tentative explanations for the anomaly are proposed based on evidence for a period (1974–80), where climatic shifts are clearly amplified in the isotopic records.


2014 ◽  
Vol 55 (68) ◽  
pp. 34-38 ◽  
Author(s):  
J. Schwander ◽  
S. Marending ◽  
T.F. Stocker ◽  
H. Fischer

AbstractDetermining the expected age at a potential ice-core drilling site on a polar ice sheet generally depends on a combination of information from remote-sensing methods, estimates of current accumulation and modelling. This poses irreducible uncertainties in retrieving an undisturbed ice core of the desired age. Although recently perfected radar techniques will improve the picture of the ice sheet below future drilling sites, rapid prospective drillings could further increase the success of deep drilling projects. Here we design and explore a drilling system for a minimum-size rapid-access hole. The advantages of a small hole are the low demand for drilling fluid, low overall weight of the equipment, fast installing and de-installing and low costs. We show that, in theory, drilling of a 20 mm hole to a depth of 3000 m is possible in ∼4 days. First concepts have been realized and verified in the field. Both the drill cuttings and the hole itself can be used to characterize the properties of the ice sheet and its potential to provide a trustworthy palaeo-record. A candidate drilling site could be explored in ∼2 weeks, which would enable the characterization of several sites in one summer season.


2019 ◽  
Vol 65 (250) ◽  
pp. 288-298 ◽  
Author(s):  
JULIUS RIX ◽  
ROBERT MULVANEY ◽  
JIALIN HONG ◽  
DAN ASHURST

ABSTRACTThe British Antarctic Survey Rapid Access Isotope Drill is an innovative new class of electromechanical ice drill, which has recently been used to drill the deepest dry hole drilled by an electromechanical auger drill. The record-breaking depth of 461.58 m was drilled in just over 104 hours at Little Dome C. The drill collects ice chippings, for water stable isotope analysis, rather than an ice core. By not collecting a core the winch can be geared for speed rather than core breaking and is lightweight. Furthermore, emptying of the chippings is performed by simply reversing the drill motor on the surface reducing the overall drilling time significantly. The borehole is then available for instrumentation. We describe the drill in its current state including modifications carried out since it was last deployed. Test seasons and the lessons learned from each are outlined. Finally, future developments for this class of drill are discussed.


2020 ◽  
Author(s):  
Johannes Sutter ◽  
Olaf Eisen ◽  
Martin Werner ◽  
Klaus Grosfeld ◽  
Thomas Kleiner ◽  
...  

<p>The response of the marine sectors of the East Antarctic Ice Sheet to future global warming represents a major source of uncertainty in sea level projections. If greenhouse gas emissions continue unbridled, ice loss in these areas may contribute up to several meters to long-term global sea level rise. In East Antarctica, thinning of the ice cover of the George V and Sabrina Coast is currently taking place, and its destabilization in past warm climate periods has been implied. The extent of such past interglacial retreat episodes cannot yet be quantitatively derived from paleo proxy records alone. Ice sheet modelling constrained by paleo observations is therefore critical to assess the stability of the East Antarctic Ice Sheet during warmer climates. We propose that a runaway retreat during the Last Interglacial of the George V Coast grounding line into the Wilkes Subglacial Basin would either leave a clear imprint on the water isotope composition in the neighbouring Talos Dome ice-core record or prohibit the preservation of an ice core record from the Last Interglacial alltogether. We test this hypothesis using a dynamic ice sheet model and infer that the marine Wilkes Basin ice sheet remained stable throughout the Last Interglacial (130,000-120,000 years ago). Our analysis provides the first constraint on Last Interglacial East Antarctic grounding line stability by benchmarking ice sheet model simulations with ice core records. Our findings also imply that ambitious mitigation efforts keeping global temperature rise in check could safeguard this region from irreversible ice loss in the long term.</p>


1990 ◽  
Vol 14 ◽  
pp. 353 ◽  
Author(s):  
D.A. Peel ◽  
R. Mulvaney

A stable isotope record extending back to 1795 is now available from Dolleman Island (70°35.2′S, 60°55.5′W), a small ice rise on the Weddell Sea coast of Antarctic Peninsula. An accurate chronology has been achieved by combined stratigraphic analysis of clear seasonal cycles in δ18O and excess SO4. Previous work (Peel and others, 1988) has shown that, since 1947, there is generally a satisfactory correlation between interannual variations in δ18O and air temperature (T) as recorded at weather stations in various parts of the region, suggesting that the derived δ18O/T ratio may be used to reconstruct air temperatures for the earlier period. Taken together with previously-reported data (Aristarain and others, 1986) for an ice core from James Ross Island it is now possible to propose a regional climatic signal for the Weddell Sea coastal sector of the region. The most striking feature is a broad maximum in δ18O for the mid-19th century, implying decadal average temperature at least as high as the present. This contrasts with available evidence from elsewhere in the southern hemisphere which suggest that this period was cooler than today. Tentative explanations for the anomaly are proposed based on evidence for a period (1974–80), where climatic shifts are clearly amplified in the isotopic records.


2014 ◽  
Vol 26 (6) ◽  
pp. 674-686 ◽  
Author(s):  
C.J. Fogwill ◽  
C.S.M. Turney ◽  
N.R. Golledge ◽  
D.H. Rood ◽  
K. Hippe ◽  
...  

AbstractDetermining the millennial-scale behaviour of marine-based sectors of the West Antarctic Ice Sheet (WAIS) is critical to improve predictions of the future contribution of Antarctica to sea level rise. Here high-resolution ice sheet modelling was combined with new terrestrial geological constraints (in situ14C and 10Be analysis) to reconstruct the evolution of two major ice streams entering the Weddell Sea over 20 000 years. The results demonstrate how marked differences in ice flux at the marine margin of the expanded Antarctic ice sheet led to a major reorganization of ice streams in the Weddell Sea during the last deglaciation, resulting in the eastward migration of the Institute Ice Stream, triggering a significant regional change in ice sheet mass balance during the early to mid Holocene. The findings highlight how spatial variability in ice flow can cause marked changes in the pattern, flux and flow direction of ice streams on millennial timescales in this marine ice sheet setting. Given that this sector of the WAIS is assumed to be sensitive to ocean-forced instability and may be influenced by predicted twenty-first century ocean warming, our ability to model and predict abrupt and extensive ice stream diversions is key to a realistic assessment of future ice sheet sensitivity.


1997 ◽  
Vol 43 (143) ◽  
pp. 3-10 ◽  
Author(s):  
V.I. Morgan ◽  
C.W. Wookey ◽  
J. Li ◽  
T.D. van Ommen ◽  
W. Skinner ◽  
...  

AbstractThe aim of deep ice drilling on Law Dome, Antarctica, has been to exploit the special characteristics of Law Dome summit, i.e. low temperature and high accumulation near an ice divide, to obtain a high-resolution ice core for climatic/environmental studies of the Holocene and the Last Glacial Maximum (LGM). Drilling was completed in February 1993, when basal ice containing small fragments of rock was reached at a depth of 1196 m. Accurate ice dating, obtained by counting annual layers revealed by fine-detail δ18О, peroxide and electrical-conductivity measurements, is continuous down to 399 m, corresponding to a date of AD 1304. Sulphate concentration measurements, made around depths where conductivity tracing indicates volcanic fallout, allow confirmation of the dating (for Agung in 1963 and Tambora in 1815) or estimates of the eruption date from the ice dating (for the Kuwae, Vanuatu, eruption ~1457). The lower part of the core is dated by extrapolating the layer-counting using a simple model of the ice flow. At the LGM, ice-fabric measurements show a large decrease (250 to 14 mm2) in crystal size and a narrow maximum in c-axis vertically. The main zone of strong single-pole fabrics however, is located higher up in a broad zone around 900 m. Oxygen-isotope (δ18O) measurements show Holocene ice down to 1113 m, the LGM at 1133 m and warm (δ18O) about the same as Holocene) ice near the base of the ice sheet. The LGM/Holocene δ18O shift of 7.0‰, only ~1‰ larger than for Vostok, indicates that Law Dome remained an independent ice cap and was not overridden by the inland ice sheet in the Glacial.


2017 ◽  
Vol 11 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Sentia Goursaud ◽  
Valérie Masson-Delmotte ◽  
Vincent Favier ◽  
Susanne Preunkert ◽  
Michel Fily ◽  
...  

Abstract. A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946–2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1, local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional (AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d'Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.


2018 ◽  
Vol 11 (6) ◽  
pp. 2299-2314 ◽  
Author(s):  
Rubén Banderas ◽  
Jorge Alvarez-Solas ◽  
Alexander Robinson ◽  
Marisa Montoya

Abstract. Offline forcing methods for ice-sheet models often make use of an index approach in which temperature anomalies relative to the present are calculated by combining a simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from the Greenland ice-core temperature reconstruction, with present-day climatologies. An important drawback of this approach is that it clearly misrepresents climate variability at millennial timescales. The reason for this is that the spatial glacial–interglacial anomaly field used is associated with orbital climatic variations, while it is scaled following the characteristic time evolution of the index, which includes orbital and millennial-scale climate variability. The spatial patterns of orbital and millennial variability are clearly not the same, as indicated by a wealth of models and data. As a result, this method can be expected to lead to a misrepresentation of climate variability and thus of the past evolution of Northern Hemisphere (NH) ice sheets. Here we illustrate the problems derived from this approach and propose a new offline climate forcing method that attempts to better represent the characteristic pattern of millennial-scale climate variability by including an additional spatial anomaly field associated with this timescale. To this end, three different synthetic transient forcing climatologies are developed for the past 120 kyr following a perturbative approach and are applied to an ice-sheet model. The impact of the climatologies on the paleo-evolution of the NH ice sheets is evaluated. The first method follows the usual index approach in which temperature anomalies relative to the present are calculated by combining a simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from ice-core data, with present-day climatologies. In the second approach the representation of millennial-scale climate variability is improved by incorporating a simulated stadial–interstadial anomaly field. The third is a refinement of the second one in which the amplitudes of both orbital and millennial-scale variations are tuned to provide perfect agreement with a recently published absolute temperature reconstruction over Greenland. The comparison of the three climate forcing methods highlights the tendency of the usual index approach to overestimate the temperature variability over North America and Eurasia at millennial timescales. This leads to a relatively high NH ice-volume variability on these timescales. Through enhanced ablation, this results in too low an ice volume throughout the last glacial period (LGP), below or at the lower end of the uncertainty range of estimations. Improving the representation of millennial-scale variability alone yields an important increase in ice volume in all NH ice sheets but especially in the Fennoscandian Ice Sheet (FIS). Optimizing the amplitude of the temperature anomalies to match the Greenland reconstruction results in a further increase in the simulated ice-sheet volume throughout the LGP. Our new method provides a more realistic representation of orbital and millennial-scale climate variability and improves the transient forcing of ice sheets during the LGP. Interestingly, our new approach underestimates ice-volume variations on millennial timescales as indicated by sea-level records. This suggests that either the origin of the latter is not the NH or that processes not represented in our study, notably variations in oceanic conditions, need to be invoked to explain millennial-scale ice-volume fluctuations. We finally provide here both our derived climate evolution of the LGP using the three methods as well as the resulting ice-sheet configurations. These could be of interest for future studies dealing with the atmospheric or/and oceanic consequences of transient ice-sheet evolution throughout the LGP and as a source of climate input to other ice-sheet models.


Sign in / Sign up

Export Citation Format

Share Document