whitecap coverage
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 13 (16) ◽  
pp. 3321
Author(s):  
Pavel D. Pivaev ◽  
Vladimir N. Kudryavtsev ◽  
Aleksandr E. Korinenko ◽  
Vladimir V. Malinovsky

The results of field observations of breaking of surface spectral peak waves, taken from an oceanographic research platform, are presented. Whitecaps generated by breaking surface waves were detected using video recordings of the sea surface, accompanied by co-located measurements of waves and wind velocity. Whitecaps were separated according to the speed of their movement, c, and then described in terms of spectral distributions of their areas and lengths over c. The contribution of dominant waves to the whitecap coverage varies with the wave age and attains more than 50% when seas are young. As found, the whitecap coverage and the total length of whitecaps generated by dominant waves exhibit strong dependence on the dominant wave steepness, ϵp, the former being proportional to ϵp6. This result supports a parameterization of the dissipation term, used in the WAM model. A semi-empirical model of the whitecap coverage, where contributions of breaking of dominant and equilibrium range waves are separated, is suggested.


2021 ◽  
Vol 20 (3) ◽  
pp. 512-520
Author(s):  
Min Liu ◽  
Bailin Yang ◽  
Nan Jia ◽  
Zhongshui Zou
Keyword(s):  

2021 ◽  
Author(s):  
Alexander Kandaurov ◽  
Yuliya Troitskaya ◽  
Vasiliy Kazakov ◽  
Daniil Sergeev

<p>Whitecap coverage were retrieved from high-speed video recordings of the water surface obtained on the unique laboratory faculty The Large Thermostratified Test Tank with wind-wave channel (cross-section from 0.7×0.7 to 0.7×0.9 m<sup>2</sup> at the end, 12 m fetch, wind velocity up to 35 m/s, U<sub>10</sub> up to 65 m/s). The wind wave was induced using a wave generator installed at the beginning of the channel (a submerged horizontal plate, frequency 1.042 Hz, amplitude 93 mm) working in a pulsed operation (three periods). Wave breaking was induced in working area by a submerged plate (1.2×0.7 m<sup>2</sup>, up to 12 depth, AOA -11,7°). Experiments were carried out for equivalent wind velocities U<sub>10</sub> from 17.8 to 40.1 m/s. Wire wave gauge was used to control the shape and phase of the incident wave.</p><p>To obtain the surface area occupied by wave breaking, we used two Cygnet CY2MP-CL-SN cameras with 50 mm lenses. The cameras are installed above the channel at a height of 273 cm from the water surface, separated by 89 cm. The image scale was 302 μm/px, the size of the image obtained from each camera is 2048x1088 px<sup>2</sup>, which corresponds to 619x328 mm<sup>2</sup> (the long side of the frame along the channel). The shooting was carried out with a frequency of 50 Hz, an exposure time of 3 ms, 250 frames were recorded for each wave train. To illuminate the image areas to the side of the measurement area, a diffuse screen was placed on the side wall, which was illuminated by powerful LED lamps to create a uniform illumination source covering the entire side wall of the section.</p><p>Using specially developed software for automatic detection of areas of wave breaking, the values of the whitecap coverage area were obtained. Automatic image processing was performed using morphological analysis in combination with manual processing of part of the frames for tweaking the algorithm parameters: for each mode, manual processing of several frames was performed, based on the results of which automatic algorithm parameters were selected to ensure that the resulting whitecap coverage corresponded. Comparison of images obtained from different angles made it possible to detect and exclude areas of glare on the surface from the whitecap coverage.</p><p>The repeatability of the created wave breakings allows carrying out independent measurements for the same conditions, for example the parameters of spray generation will give estimations of the average number of fragmentation events per unit area of the wave breaking area.</p><p>The work was supported by the RFBR grants 21-55-50005 and 20-05-00322 (conducting an experiment), President grant for young scientists МК-5503.2021.1.5 (software development) and the RSF grant No. 19-17-00209 (data processing).</p>


2020 ◽  
Vol 39 (8) ◽  
pp. 24-33
Author(s):  
Jian Shi ◽  
Wenjing Zhang ◽  
Xueyan Zhang ◽  
Jingdong Liu ◽  
Zhenyu Liu

2020 ◽  
Author(s):  
Alexander Kandaurov ◽  
Yuliya Troitskaya ◽  
Daniil Sergeev ◽  
Dmitry Kozlov

<p>Whitecap coverage were retrieved from high-speed video recordings of the water surface obtained on the unique laboratory faculty Heidelberg Small-Scale Air-Sea Interaction Facility, the Aeolotron (annular wind-wave facility, 60 cm width, 2.4 m height, circumference of 27.3 m at the inner wall; water depth during experiments 1.0 m, water volume 18.0 m³, air space volume 24 m³; wind was generated by two axial fans mounted into the ceiling).</p><p>Records were made in the vertical direction (from top to bottom) in a shadowgraph configuration with backlight located under the channel. On the annular channel, regimes with an abrupt start of wind under an unperturbed surface condition were implemented, including the case of butanol presence in water simulating salinity. At the same time, the wave parameters varying depending on the time elapsed after the wind was turned on, made it possible to study the characteristics of the generation of spray at various effective fetches.<br>As a result of semi-automatic processing of image sequences using specially developed software that allows marking the moment and position of the bag-breakup formation on the videos, the dependences of the frequency of occurrence of these phenomena per unit surface area versus time after turning on the wind were obtained. From the same images, using the developed software for automatic detection of areas of wave breaking, the values of the whitecap coverage area were obtained. In this case, automatic image processing was performed using morphological analysis in combination with manual processing of part of the frames for tweaking the algorithm parameters: for each mode (water characteristics and wind speed), manual processing of several frames was performed, based on the results of which automatic algorithm parameters were selected to ensure that the resulting whitecap coverage corresponded. Since the same high-speed surface images were used to study the statistics of occurrence of events leading to the spray generation and the dependences of the whitecap coverage on time after turning on the wind for each regime were obtained, we were able to estimate the average number of fragmentation events per unit area of the collapse area.</p><p>The work was supported by the RFBR grant 18-35-20068 (conducting an experiment), President grant for young scientists MK-3184.2019.5 (software development) and the RSF grant No. 18-77-00074 (data processing).</p>


Author(s):  
B. Scanlon ◽  
B. Ward ◽  
C. O’Dowd ◽  
S. G. Jennings

Sign in / Sign up

Export Citation Format

Share Document