scholarly journals Hybrid FSK-PSK Waveform Optimization for Radar Based on Alternating Direction Method of Multiplier (ADMM)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7915
Author(s):  
Zhiting Fei ◽  
Jiachen Zhao ◽  
Zhe Geng ◽  
Xiaohua Zhu ◽  
Jindong Zhang

In this paper, a new radar signal modulated with a hybrid of the frequency shift keying (FSK) and the phase shift keying (PSK) signal—i.e., the FSK-PSK signal—is studied. Different phase encoding sequences are used to modulate the sub-pulses to obtain lower sidelobe levels and ensure signal orthogonality. In addition, to counter intra-pulse slice repeater jamming of specific length generated by the enemy jammer, an orthogonal waveform made of sub-pulses of equal length based on the FSK-PSK modulation scheme is designed. The simulation results show that the optimized discrete phase encoding sequence can significantly enhance the orthogonality of the sub-pulse in the FSK-PSK signal and effectively suppress the slice repeater jamming. Two algorithms are proposed: (1) the low sidelobe waveform optimization algorithm based on ADMM (LSW-ADMM); and (2) the anti-slice-repeater-jamming algorithm based on ADMM (ASRJ-ADMM). Both algorithms exhibit fast convergence speed and low computational complexity.

Author(s):  
Isaac A. E. ◽  
Dike H.U.

In this paper, analytical models for the computation of error probability (BER) of the Multi-level Phase Shift Keying (MPSK) modulation scheme is presented. Analytical models for computing MPSK bit error probability based on Q function, error function (erf) and complementary error function (erfc) are presented. Also, an analytical model for computing the symbol error rate for MPSK is presented. Furthermore, a generalized analytical expression for BER as a function of modulation order (M) and energy per bit to noise power density ratio (Eb/No) is presented. The BER was computed for various values of M (2 ≤ M ≤ 256) and Eb/No (0 dB ≤ Eb/No ≤ 14 Db). The results showed that at Eb/No =12 dB, a BER of 9.006E-09 is realized for M =2 and M =4 whereas BER of 1.056E-01 is realized for M = 256. Also, for the same M = 2 , the value of BER decreased from 1.2501E-02 at Eb/No = 4 dB to 9.0060E-09at Eb/No =12 dB. Generally, the results showed that for the MPSK modulation scheme, for a given value of Eb/No, the lower modulation order (M) has a lower BER and for a given modulation order, (M) the BER decreases as Eb/No increases.


2020 ◽  
Vol 7 (12) ◽  
pp. 201711
Author(s):  
Ben Allen ◽  
Timothy D. Drysdale ◽  
Chris Stevens

We present the four-dimensional volumetric electromagnetic field measurements ( x , y , z and frequency) of the complex radiated field produced by an 8-element circular antenna array. The array is designed to produce a Laguerre–Gauss (LG) mode l = +1 over the frequency range of 9–10 GHz. We evaluate our findings in terms of far-field LG mode purity and spectral efficiency in terms of the quadrature amplitude modulation (QAM) modulation scheme that can be supported. The application of LG modes in radio systems is as a means of multiplexing several data streams onto the same frequency, polarization and time slot, thus making a highly spectrally efficient transmission system or enhancing radar systems by means of exploiting mode behaviour as an additional degree of freedom. Our results show that for the circular antenna array, we find that mode purity is sufficient to support binary phase shift keying or quadrature phase shift keying modulation over a 0.3 GHz bandwidth, which corresponds to a spectral efficiency of 1.5 b s −1 Hz −1 per mode. Closer to the antennas' design frequency, 256QAM modulation may be supported over a 0.05 GHz band, and which corresponds to a spectral efficiency of 11 b s −1 Hz −1 per mode. We anticipate the practical insights provided in this paper contribute to the successful design of such systems.


2013 ◽  
Vol 347-350 ◽  
pp. 1879-1883
Author(s):  
Lei Xu ◽  
Jin Nan Zhang ◽  
Yan Gan Zhang ◽  
Mi Lin

Modulation principle of dual-polarization quadratu-re phase shift keying signal and polarization-switched QPSK signal are demonstrated and advantages of PS-QPSK are proved in theoretically. A novel modulation scheme of PS-RZ-QPSK signal is proposed in this paper. The scheme reduces transmitter cost by less use of Mach-Zehnder modulator, but also presents similar performance as traditional structure for PS-RZ-QPSK. The simulate result indicates PS-RZ-QPSK can achieve a better transmission performance than DP-RZ-QPSK at the same bit rate (84Gb/s) and baud rate (28GBd), and proves showing the feasibility of novel modulation scheme.


2016 ◽  
Vol 4 (2) ◽  
pp. 172-180
Author(s):  
Barkha Pandey ◽  
Raghu Harsh Kalia ◽  
Monica Kaushik ◽  
Monika Arora

In a last few decades there has been tremendous growth and a drastic rise in wireless communication technologies. The major issue that the world is facing today with the advent of so many sophisticated wireless communication devices is efficient utilization of the spectrum. Spectrum efficiency comes together with a tradeoff factor of energy consumption. Thus, the need of the hour is an energy and bandwidth efficient technique. DS-CDMA is one of the competitive and most investigated technique in wireless communication which caters the large demand at the same time with limited bandwidth. Existing modulation techniques does not promise to provide better performance in case of higher noise. Therefore, one looks for a better BER stipulated modulation format to improve and enhance the performance of the system. This article revisits conventional Binary phase shift keying method and compares its performance in terms of BER with a special Extended Binary Phase Shift Keying (EBPSK) modulation format for a DS- CDMA system. EBPSK scheme is flexible and simple which is easily integrated in a network and assures improved and enhanced performance.


2016 ◽  
Vol 17 (2) ◽  
pp. 71-82 ◽  
Author(s):  
Sajjad Ahmed Ghauri

Demodulation process without the knowledge of modulation scheme requires Automatic Modulation Classification (AMC). When receiver has limited information about received signal then AMC become essential process. AMC finds important place in the field many civil and military fields such as modern electronic warfare, interfering source recognition, frequency management, link adaptation etc. In this paper we explore the use of K-nearest neighbor (KNN) for modulation classification with different distance measurement methods. Five modulation schemes are used for classification purpose which is Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), 16-QAM and 64-QAM. Higher order cummulants (HOC) are used as an input feature set to the classifier. Simulation results shows that proposed classification method provides better results for the considered modulation formats.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Samer S. Saab ◽  
Joe Khalife ◽  
Rayana H. Jaafar

In this paper a novel modulation scheme called Carrier Interleaved Multiple Access (CIMA) is proposed. CIMA provides an alternative for multiple-access modulation accommodating resistance to noise and channel interference. The approach is based on polar signaling modulated with an FM-like composite sinusoidal function. The user assigned frequency deviation and modulation index are strictly related and unique. The latter parameters are generated using a nontraditional pseudorandom noise generator (PRNG). This PRNG provides CIMA with low interference capability between cochannels and adjacent channels. CIMA can be considered for a single-user or multiple-access technique. Selected CIMA characteristics are presented. In order to numerically illustrate the effectiveness of the proposed modulation scheme, the performance of CIMA is compared with the conventional direct-sequence spread spectrum binary phase-shift keying (DSSS-BPSK) modulation.


Sign in / Sign up

Export Citation Format

Share Document