hybrid offspring
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 26)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yong Wang ◽  
Yuling Li ◽  
Feng Sun ◽  
Guohong Wu ◽  
Aizezi Sulaiman ◽  
...  

Abstract Seedless grapes play an important role in fresh food and dry production. New varieties breeding by hybridization with seedless varieties as female parents is the most effective way to cultivate seedless varieties. However, the embryos of Seedless varieties can not develop normally, so it is difficult to obtain hybrid offspring as hybrid female parent. Moreover, grape is a perennial tree species with highly heterozygous genes, with long breeding cycle and low efficiency. In this study, embryo rescue technology was used to cultivate hybrid offspring by crossing with ‘Ruby Seedless’ as female parent and ‘Hongqitezao’ as male parent, so as to solve the problem that seedless varieties can not be female parent; and molecular technology was used to carry out assisted breeding research to solve the problems of long cycle and low efficiency. TP-M13-SSR technique was used to carry out authenticity breeding. SCAR marker SCF27-2000 was used to detect the seedless traits of hybrid plants, phenotypic traits was used to verify the results of molecular markers, and Seedless trait-related SSR markers VMC7F2, VrSD10 and P3_VvAGL11 was used to detect and verify the genotypes of individual plants with inconsistent detection results by the two methods. In this study, a total of 384 hybrid offspring were finally obtained, and the hybridization rate was 84.43%. A total of 163 fruit-bearing plants were identified, and the phenotypes of their seeds were identified. The coincidence rate of genotypic and phenotypic analyses was 93.88%. Additionally, 305 F1 plants were detected using the SCF27-2000 marker, and the abortion rate was 64.92%. We speculate that the inconsistent results were caused by parthenocarpy, SCF27 marker limitation, among other factors. Overall, this study shows that embryo rescue is an effective method for breeding seedless grape cultivars, and the application of molecular markers could facilitate the early identification of hybrid traits,and improve breeding efficiency.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1139
Author(s):  
Xingeng Wang ◽  
Melody A. Keena

The Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) and citrus longhorned beetle (CLB), Anoplophora chinensis (Förster) (both Coleoptera: Cerambycidae: Lamiinae), are high-risk invasive pests that attack various healthy hardwood trees. These two species share some similar host plants and overlapping distributions in large parts of their native ranges in China and the Korean peninsula as well as similar reproductive behaviors. The original Anoplophora malasiaca (Thomson) occurs in Japan and has been synonymized as CLB (hereafter referred to JCLB). In this study, a 30-min behavioral observation of paired adults, followed by a four-week exposure to host bolts, showed that ALB could not successfully cross with CLB. Mating was observed between female CLB and male ALB but not between female ALB and male CLB, no laid eggs hatched. JCLB males successfully crossed with ALB females to produce viable eggs although the overall percentage of hatched eggs was lower than those from conspecific mating pairs. However, ALB males could not successfully cross with JCLB females. CLB and JCLB mated and produced viable hybrid offspring and the hybrid F1 offspring eggs were fertile. These results suggest an asymmetrical hybridization between ALB and JCLB, and that both CLB and JCLB might be considered as two subspecies with different hybridization potential with congeneric ALB. Given their potential impacts on ecosystems and many economically important tree hosts, invasion of these geographically isolated species (ALB and JCLB) or distant subspecies (CLB and JCLB) into the same region may facilitate potential hybridization, which could be a potential concern for the management of these two globally important invasive forest pests. Further studies are needed to determine if fertile hybrid offspring are capable of breeding continually or backcrossing with parental offspring successfully.


2021 ◽  
Author(s):  
Wenke Wang ◽  
Rachel B. Brem ◽  
Jennifer Garrison ◽  
Anna Flury

Organisms in the wild can acquire disease and stress resistance traits that far outstrip the programs endogenous to humans. Finding the molecular basis of such natural resistance characters is a key goal of evolutionary genetics. Standard statistical-genetic methods toward this end can perform poorly in organismal systems that lack high rates of meiotic recombination, like Caenorhabditis worms. Here we discovered unique ER stress resistance in a Kenyan C. elegans isolate, which in inter-strain crosses was passed by hermaphrodite mothers to hybrid offspring. We developed an unbiased version of the reciprocal hemizygosity test, RH-seq, to explore the genetics of this parent-of-origin-dependent phenotype. Among top-scoring gene candidates from a partial-coverage RH-seq screen, we focused on the neuronally-expressed, cuticlin-like gene cutl-24 for validation. In gene disruption and controlled crossing experiments, we found that cutl-24 was required in Kenyan hermaphrodite mothers for ER stress tolerance in their inter-strain hybrid offspring, and was a contributor to the trait in their purebred progeny. These data establish the Kenyan strain allele of cutl-24 as a determinant of a natural stress-resistant state, and they set a precedent for the dissection of natural trait diversity in invertebrate animals without the need for a panel of meiotic recombinants.


2020 ◽  
Author(s):  
Michelle E John ◽  
Rebecca C Fuller

Abstract Reinforcement can occur when maladaptive hybridization in sympatry favors the evolution of conspecific preferences and target traits that promote behavioral isolation (BI). In many systems, enhanced BI is due to increased female preference for conspecifics. In others, BI is driven by male preference, and in other systems both sexes exert preferences. Some of these patterns can be attributed to classic sex-specific costs and benefits of preference. Alternatively, sex differences in conspecific preference can emerge due to asymmetric postzygotic isolation (e.g., hybrid offspring from female A × male B have lower fitness than hybrid offspring from female B × male A), which can lead to asymmetric BI (e.g., female A and male B are less likely to mate than female B and male A). Understanding reinforcement requires understanding how conspecific preferences evolve in sympatry. Yet, estimating conspecific preferences can be difficult when both sexes are choosy. In this study, we use Lucania killifish to test the hypothesis that patterns of reinforcement are driven by asymmetric postzygotic isolation between species. If true, we predicted that sympatric female Lucania goodei and sympatric male L. parva should have lower levels of BI compared with their sympatric counterparts, as they produce hybrid offspring with the highest fitness. To address the problem of measuring BI when both sexes are choosy, we inferred the contribution to BI of each partner using assays where one sex in the mating pair comes from an allopatric population with potentially low preference, whereas the other comes from a sympatric population with high preference. For one hybrid cross direction, we found that both female L. parva and male L. goodei have high contributions to BI in sympatry. In the other hybrid cross direction, we found that only female L. goodei contribute to BI. Sympatric male L. parva readily engaged in hybrid spawnings with allopatric L. goodei females. These results indicate that both asymmetric postzygotic isolation and the traditional sex-specific costs to preference likely affect the nature of selection on conspecific preferences and target traits.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenhua Shang ◽  
David J. Horovitz ◽  
Ronald H. McKenzie ◽  
Jessica L. Keisler ◽  
Michael R. Felder ◽  
...  

Abstract Background Peromyscus are the most common mammalian species in North America and are widely used in both laboratory and field studies. The deer mouse, P. maniculatus and the old-field mouse, P. polionotus, are closely related and can generate viable and fertile hybrid offspring. The ability to generate hybrid offspring, coupled with developing genomic resources, enables researchers to conduct linkage analysis studies to identify genomic loci associated with specific traits. Results We used available genomic data to identify DNA polymorphisms between P. maniculatus and P. polionotus and used the polymorphic data to identify the range of genetic complexity that underlies physiological and behavioral differences between the species, including cholesterol metabolism and genes associated with autism. In addition, we used the polymorphic data to conduct a candidate gene linkage analysis for the Dominant spot trait and determined that Dominant spot is linked to a region of chromosome 20 that contains a strong candidate gene, Sox10. During the linkage analysis, we found that the spot size varied quantitively in affected Peromyscus based on genetic background. Conclusions The expanding genomic resources for Peromyscus facilitate their use in linkage analysis studies, enabling the identification of loci associated with specific traits. More specifically, we have linked a coat color spotting phenotype, Dominant spot, with Sox10, a member the neural crest gene regulatory network, and that there are likely two genetic modifiers that interact with Dominant spot. These results establish Peromyscus as a model system for identifying new alleles of the neural crest gene regulatory network.


Sign in / Sign up

Export Citation Format

Share Document