sympatric population
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 0)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
King-Siang Goh ◽  
Chia-Ming Lee ◽  
Tzi-Yuan Wang

It is highly challenging to evaluate the species’ content and behavior changes in wild fireflies, especially for a sympatric population. Here, the flash interval (FI) and flash duration (FD) of flying males from three sympatric species (Abscondita cerata, Luciola kagiana, and Luciola curtithorax) were investigated for their potentials in assessing species composition and nocturnal behaviors during the A. cerata mating season. Both FI and FD were quantified from the continuous flashes of adult fireflies (lasting 5–30 s) via spatiotemporal analyses of video recorded along the Genliao hiking trail in Taipei, Taiwan. Compared to FD patterns and flash colors, FI patterns exhibited the highest species specificity, making them a suitable reference for differentiating firefly species. Through the case study of a massive occurrence of A. cerata (21 April 2018), the species contents (~85% of the flying population) and active periods of a sympatric population comprising A. cerata and L. kagiana were successfully evaluated by FI pattern matching, as well as field specimen collections. Our study suggests that FI patterns may be a reliable species-specific luminous marker for monitoring the behavioral changes in a sympatric firefly population in the field, and has implication values for firefly conservation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pawel Malec ◽  
Justus Weber ◽  
Robin Böhmer ◽  
Marc Fiebig ◽  
Denise Meinert ◽  
...  

Abstract Background To understand which reproductive barriers initiate speciation is a major question in evolutionary research. Despite their high species numbers and specific biology, there are only few studies on speciation in Hymenoptera. This study aims to identify very early reproductive barriers in a local, sympatric population of Nasonia vitripennis (Walker 1836), a hymenopterous parasitoid of fly pupae. We studied ecological barriers, sexual barriers, and the reduction in F1-female offspring as a postmating barrier, as well as the population structure using microsatellites. Results We found considerable inbreeding within female strains and a population structure with either three or five subpopulation clusters defined by microsatellites. In addition, there are two ecotypes, one parasitizing fly pupae in bird nests and the other on carrion. The nest ecotype is mainly formed from one of the microsatellite clusters, the two or four remaining microsatellite clusters form the carrion ecotype. There was slight sexual isolation and a reduction in F1-female offspring between inbreeding strains from the same microsatellite clusters and the same ecotypes. Strains from different microsatellite clusters are separated by a reduction in F1-female offspring. Ecotypes are separated only by ecological barriers. Conclusions This is the first demonstration of very early reproductive barriers within a sympatric population of Hymenoptera. It demonstrates that sexual and premating barriers can precede ecological separation. This indicates the complexity of ecotype formation and highlights the general need for more studies within homogenous populations for the identification of the earliest barriers in the speciation process.


2021 ◽  
Author(s):  
Silas Tittes ◽  
Anne Lorant ◽  
Sean McGinty ◽  
John F. Doebley ◽  
James B. Holland ◽  
...  

ABSTRACTWhat is the genetic architecture of local adaptation and what is the geographic scale that it operates over? We investigated patterns of local and convergent adaptation in five sympatric population pairs of traditionally cultivated maize and its wild relative teosinte (Zea mays subsp. parviglumis). We found that signatures of local adaptation based on the inference of adaptive fixations and selective sweeps are frequently exclusive to individual populations, more so in teosinte compared to maize. However, for both maize and teosinte, selective sweeps are frequently shared by several populations, and often between the subspecies. We were further able to infer that selective sweeps were shared among populations most often via migration, though sharing via standing variation was also common. Our analyses suggest that teosinte has been a continued source of beneficial alleles for maize, post domestication, and that maize populations have facilitated adaptation in teosinte by moving beneficial alleles across the landscape. Taken together, out results suggest local adaptation in maize and teosinte has an intermediate geographic scale, one that is larger than individual populations, but smaller than the species range.


2021 ◽  
Author(s):  
Hannes Dittberner ◽  
Aurelien Tellier ◽  
Juliette de Meaux

ABSTRACTContemporary gene flow, when resumed after a period of isolation, can have crucial consequences for endangered species, as it can both increase the supply of adaptive alleles and erode local adaptation. Determining the history of gene flow and thus the importance of contemporary hybridization, however, is notoriously difficult. Here, we focus on two endangered plant species, Arabis nemorensis and A. sagittata, which hybridize naturally in a sympatric population located on the banks of the Rhine. Using reduced genome sequencing, we determined the phylogeography of the two taxa but report only a unique sympatric population. Molecular variation in chloroplast DNA indicated that A. sagittata is the principal receiver of gene flow. Applying classical D-statistics and its derivatives to whole-genome data of 35 accessions, we detect gene flow not only in the sympatric population but also among allopatric populations. Using an Approximate Bayesian computation approach, we identify the model that best describes the history of gene flow between these taxa. This model shows that low levels of gene flow have persisted long after speciation. Around 10 000 years ago, gene flow stopped and a period of complete isolation began. Eventually, a hotspot of contemporary hybridization was formed in the unique sympatric population. Occasional sympatry may have helped protect these lineages from extinction in spite of their extremely low diversity.


2020 ◽  
Author(s):  
Michelle E John ◽  
Rebecca C Fuller

Abstract Reinforcement can occur when maladaptive hybridization in sympatry favors the evolution of conspecific preferences and target traits that promote behavioral isolation (BI). In many systems, enhanced BI is due to increased female preference for conspecifics. In others, BI is driven by male preference, and in other systems both sexes exert preferences. Some of these patterns can be attributed to classic sex-specific costs and benefits of preference. Alternatively, sex differences in conspecific preference can emerge due to asymmetric postzygotic isolation (e.g., hybrid offspring from female A × male B have lower fitness than hybrid offspring from female B × male A), which can lead to asymmetric BI (e.g., female A and male B are less likely to mate than female B and male A). Understanding reinforcement requires understanding how conspecific preferences evolve in sympatry. Yet, estimating conspecific preferences can be difficult when both sexes are choosy. In this study, we use Lucania killifish to test the hypothesis that patterns of reinforcement are driven by asymmetric postzygotic isolation between species. If true, we predicted that sympatric female Lucania goodei and sympatric male L. parva should have lower levels of BI compared with their sympatric counterparts, as they produce hybrid offspring with the highest fitness. To address the problem of measuring BI when both sexes are choosy, we inferred the contribution to BI of each partner using assays where one sex in the mating pair comes from an allopatric population with potentially low preference, whereas the other comes from a sympatric population with high preference. For one hybrid cross direction, we found that both female L. parva and male L. goodei have high contributions to BI in sympatry. In the other hybrid cross direction, we found that only female L. goodei contribute to BI. Sympatric male L. parva readily engaged in hybrid spawnings with allopatric L. goodei females. These results indicate that both asymmetric postzygotic isolation and the traditional sex-specific costs to preference likely affect the nature of selection on conspecific preferences and target traits.


2020 ◽  
Author(s):  
Yue Ma ◽  
Spencer C H Barrett ◽  
Fang-Yuan Wang ◽  
Jun-Chen Deng ◽  
Wei-Ning Bai

Abstract Background and Aims Theory predicts that outcrossing should be more prevalent among perennials than annuals, a pattern confirmed by comparative evidence from diverse angiosperm families. However, intraspecific comparisons between annual and perennial populations are few because such variation is uncommon among flowering plants. Here, we test the hypothesis that perennial populations outcross more than annual populations by investigating Incarvillea sinensis, a wide-ranging insect-pollinated herb native to China. The occurrence of both allopatric and sympatric populations allows us to examine the stability of mating system differences between life histories under varying ecological conditions. Methods We estimated outcrossing rates and biparental inbreeding in 16 allopatric and five sympatric populations in which both life histories coexisted using 20 microsatellite loci. In each population we measured height, branch number, corolla size, tube length and herkogamy for ~30 individuals. In a sympatric population, we recorded daily flower number, pollinator visitation and the fruit and seed set of annual and perennial plants. Key Results As predicted, outcrossing rates (t) were considerably higher in perennial (mean = 0.76) than annual (mean = 0.09) populations. This difference in mating system was also maintained at sympatric sites where plants grew intermixed. In both allopatric and sympatric populations the degree of herkogamy was consistently larger in outcrossing than selfing plants. Perennials were more branched, with more and larger flowers than in annuals. In a sympatric population, annuals had a significantly higher fruit and seed set than perennials. Conclusions Genetically based differences in herkogamy between annuals and perennials appear to play a key role in governing outcrossing rates in populations, regardless of variation in local ecological conditions. The maintenance of mating system and life history trait differentiation between perennial and annual populations of I. sinensis probably results from correlated evolution in response to local environmental conditions.


2020 ◽  
Vol 24 ◽  
pp. 00099
Author(s):  
Elena Zhmud ◽  
Aleksandra Nabieva ◽  
Irina Kuban ◽  
Natasha Williams ◽  
Olga Dorogina

Cypripedium calceolus L. and C. macranthon Sw. (Orchidaceae) are rare species throughout almost the entire territory of Russia. Though the data on intraspecific genetic differentiation has been presented in the literature, the species of C. calceolus, C. macranthon and alleged hybrids of C. × ventricosum growing in sympatric population in the Iskitim District of the Novosibirsk Region (NR) have not been investigated yet. The purpose of this work is dentification of the rare species of Cypripedium calceolus, C. macranthon and detection of C. × ventricosum hybrids in the NR using morphometric parameters and ISSR markers. It was found the mature generative specimens of C. × ventricosum formed the largest number of shoots, compared with the parent species. According to the number of flowers on the generative shoot, the hybrid occupied an intermediate position. According to the ISSR analysis, components from both parental species were identified in each of the three hybrids studied. Therefore, the presence of C. × ventricosum hybrid plants in the local NR coenopopulation of co-growing species C. calceolus and C. macranthon was detected and confirmed based on the study of morphometric parameters and ISSR markers.


2018 ◽  
Vol 49 (1) ◽  
Author(s):  
Rebecca S. Taylor ◽  
Anna Bailie ◽  
Previn Gulavita ◽  
Tim Birt ◽  
Tomas Aarvak ◽  
...  

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1308 ◽  
Author(s):  
María Losada ◽  
Tania Veiga ◽  
Javier Guitián ◽  
José Guitián ◽  
Pablo Guitián ◽  
...  

InGentiana luteatwo varieties are described:G. luteavar.aurantiacawith orange corolla colors andG. luteavar.luteawith yellow corolla colors. Both color varieties co-occur in NW Spain, and pollinators select flower color in this species. It is not known whether a hybridization barrier exists between theseG. luteacolor varieties. We aim to test the compatibility between flower color varieties inG. luteaand its dependence on pollen vectors. Within a sympatric population containing both flower color morphs, we analyzed differences in reproductive success (number, weight, viability and germinability of seeds) depending on fertilization treatments (autogamy and xenogamy within variety and among varieties). We found a 93% reduction in number of seeds and a 37% reduction in seed weight respectively of autogamy treatments compared to xenogamy crossings. Additionally, reproductive success is higher within color varieties than among varieties, due to a 45% seed viability reduction on hybrids from different varieties. Our results show thatG. luteareproductive success is strongly dependent on pollinators and that a partial hybridization barrier exists betweenG. luteavarieties.


Sign in / Sign up

Export Citation Format

Share Document