Effects of inter‐specific crossbreeding between the invasive pine wood nematode, Bursaphelenchus xylophilus and native B .  mucronatus on morphology and reproduction of the hybrid offspring

2021 ◽  
Author(s):  
Marek Tomalak ◽  
Anna Filipiak
Nematology ◽  
2005 ◽  
Vol 7 (6) ◽  
pp. 809-817 ◽  
Author(s):  
Kazuo Suzuki ◽  
Daisuke Sakaue ◽  
Toshihiro Yamada ◽  
Yu Wang

AbstractInfluence of fungi on multiplication and distribution of the pine wood nematode (PWN), Bursaphelenchus xylophilus, was investigated in Pinus thunbergii cuttings. Axenized nematodes and/or one of two fungi isolated from healthy and PWN-killed P. thunbergii were inoculated together into autoclaved cuttings. A close relationship between the existence and distribution of fungal hyphae, and the multiplication and distribution of PWN was observed. The PWN did not multiply when only axenized nematodes were inoculated in the absence of fungi. When fungi were present, PWN population size increased markedly. The number of nematodes was high at sites where fungal hyphae were distributed. It is suggested that the restriction of a large portion of the nematode population near the inoculation site during the early stage of disease development is closely related to restricted distribution of fungal hyphae.


Author(s):  
Yang Wang ◽  
Fengmao Chen ◽  
Lichao Wang ◽  
Lifeng Zhou ◽  
Juan Song

AbstractIn order to study the causes of pine wood nematode (PWN) departure from Monochamus alternatus, the effects of the feeding behavior of M. alternatus on the start date of the departure of PWN were studied. The start date of the departure of PWN carried by the directly fed M. alternatus was 5—13 d after beetle emergence, mainly concentrated within 6—10 d, with a mean (±SD) of 8.02 ± 1.96 d. The start date of the departure of PWN carried by the M. alternatus fed after starvation was 5—14 d after beetle emergence, mainly concentrated within 6—9 d, with a mean of 7.76 ± 2.28 d. The results show that there was no significant difference in the start departure date of PWN between the two treatments. This shows that the feeding behavior of M. alternatus is not the trigger for PWN departure. At the same time, it was found that the motility of the PWN carried by M. alternatus at 8 d after emergence was significantly greater than that of the PWN carried by the newly emerged M. alternatus. And the PWN carried by M. alternatus at 8 d after emergence was extracted more easily than the PWN carried by newly emerged beetles. These results show that greater motility was associated with easier departure of PWN from M. alternatus. In addition, transcriptome sequencing found that the level of oxidative phosphorylation metabolism of PWN carried by beetles at 8 d after emergence was significantly higher than that in the PWN carried by newly emerged beetle. High oxidative phosphorylation was associated with increased energy production and motility by the PWN and were the internal cause of the start of nematode departure.


2021 ◽  
Author(s):  
Ye Chen ◽  
Xiang Zhou ◽  
Kai Guo ◽  
Sha-Ni Chen ◽  
Xiu Su

Abstract Background: The pine wood nematode Bursaphelenchus xylophilus is a worldwide destructive pest on Pinus trees and lacks effective control measures. Screening nematotoxic protein toxins has been conducted to develop new strategies for nematode control. Results: The present study provided initial insights into the responses of B. xylophilus exposed to a nematocidal cytolytic-like protein (CytCo) based on the transcriptome profiling. A large set of differentially expressed genes (1266 DEGs) were found related to nematode development, reproduction, metabolism, motion, and immune system. In response to the toxic protein, B. xylophilus upregulated DEGs encoding cuticle collagens, transporters, and cytochrome P450. In addition, many DEGs related to cell death, lipid metabolism, major sperm proteins, proteinases/peptidases, phosphatases, kinases, virulence factors, and transthyretin-like proteins were downregulated. And Gene Ontology enrichment analysis showed that CytCo treatment significantly affecting DEGs functioning in muscle contraction, lipid localization, MAPK cascade. The pathway richness of Kyoto Encyclopedia of Genes and Genomes showed that the DEGs were concentrated in lysosome and fatty acid degradation. The weight co-expression network analysis indicated that the hub genes affected by CytCo were associated with the nematode cuticular collagen. Conclusions: These results showed that the CytCo protein toxin could interference gene expression to produce multiple nematotoxic effects, providing initial insight into its control potential of pine wood nematode.


2020 ◽  
Author(s):  
Min‐Kyoung Kang ◽  
Min‐Hee Kim ◽  
Hae‐Ryong Park ◽  
Min‐Jiao Liu ◽  
Chun Zhi Jin ◽  
...  

2019 ◽  
Vol 31 (4) ◽  
pp. 1399-1403
Author(s):  
Sung-Chan Lee ◽  
Hyo-Rim Lee ◽  
Dong-Soo Kim ◽  
Jun-Hyeong Kwon ◽  
Min-Jung Huh ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
pp. 215 ◽  
Author(s):  
Qi Xue ◽  
Xiao-Qin Wu ◽  
Wan-Jun Zhang ◽  
Li-Na Deng ◽  
Miao-Miao Wu

The pine wood nematode (PWN), Bursaphelenchus xylophilus, is the pathogen of pine wilt disease (PWD), resulting in huge losses in pine forests. However, its pathogenic mechanism remains unclear. The cathepsin L-like cysteine proteinase (CPL) genes are multifunctional genes related to the parasitic abilities of plant-parasitic nematodes, but their functions in PWN remain unclear. We cloned three cpl genes of PWN (Bx-cpls) by rapid amplification of cDNA ends (RACE) and analyzed their characteristics using bioinformatic methods. The tissue specificity of cpl gene of PWN (Bx-cpl) was studied using in situ mRNA hybridization (ISH). The functions of Bx-cpls in development and pathogenicity were investigated using real-time quantitative PCR (qPCR) and RNA interference (RNAi). The results showed that the full-length cDNAs of Bx-cpl-1, Bx-cpl-2, and Bx-cpl-3 were 1163 bp, 1305 bp, and 1302 bp, respectively. Bx-cpls could accumulate specifically in the egg, intestine, and genital system of PWN. During different developmental stages of PWN, the expression of Bx-cpls in the egg stage was highest. After infection, the expression levels of Bx-cpls increased and reached their highest at the initial stage of PWD, then declined gradually. The silencing of Bx-cpl could reduce the feeding, reproduction, and pathogenicity of PWN. These results revealed that Bx-cpls play multiple roles in the development and pathogenic processes of PWN.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yongxia Li ◽  
Yuqian Feng ◽  
Xuan Wang ◽  
Jing Cui ◽  
Xun Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document