scholarly journals Phase-sensitive seeded modulation instability in passive fiber resonators

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Florent Bessin ◽  
Corentin Naveau ◽  
Matteo Conforti ◽  
Alexandre Kudlinski ◽  
Pascal Szriftgiser ◽  
...  

AbstractModulation instability is one of the most ubiquitous phenomena in physics. Here we investigate the phase-sensitive properties of modulation instability with harmonic seeding in passive fiber resonators. Theoretical investigations based on the Lugiato−Lefever equation with time dependent pump and a three-wave truncation show that the dynamics of the system is sensitive to the relative phase between input signal, idler, and pump waves. The modulation instability gain can even vanish for a peculiar value of the initial relative phase. An advanced multi-heterodyne measurement technique had been developed to record the real time evolution, round-trip to round-trip, of the power and phase of the output cavity field to confirm these theoretical predictions.

2020 ◽  
Vol 18 (03) ◽  
pp. 2050003
Author(s):  
S. T. Korashy ◽  
T. M. El-Shahat ◽  
N. Habiballah ◽  
H. El-Sheikh ◽  
M. Abdel-Aty

In this paper, we present some properties through two two-level atoms interacting with a two-mode quantized cavity field. We study this system in the presence of detuning parameter, Kerr nonlinearity, Stark shift, relative phase and intensity-dependent atoms-field coupling. Also, the coupling parameter is modulated to be time dependent. The exact solution of this model is given by using the Schrődinger equation when the atoms and the field are initially prepared in superposition states and coherent states, respectively. We employed the results to calculate some aspects such as linear entropy, total atomic inversion and cross-correlation function.


1969 ◽  
Vol 24 (10) ◽  
pp. 1449-1457
Author(s):  
H. Klingenberg ◽  
F. Sardei ◽  
W. Zimmermann

Abstract In continuation of the work on interaction between shock waves and magnetic fields 1,2 the experiments reported here measured the atomic and electron densities in the interaction region by means of an interferometric and a spectroscopic method. The transient atomic density was also calculated using a one-dimensional theory based on the work of Johnson3 , but modified to give an improved physical model. The experimental results were compared with the theoretical predictions.


2005 ◽  
Vol 495-497 ◽  
pp. 603-608 ◽  
Author(s):  
Atsushi Todayama ◽  
Hirosuke Inagaki

On the basis of Taylor-Bishop-Hill’s theory, many previous theoretical investigations have predicted that, at high rolling reductions, most of orientations should rotate along theβfiber from {110}<112> to {123}<634> and finally into the {112}<111> stable end orientations. Although some exceptions exist, experimental observations have shown, on the other hand, that the maximum on the β fiber is located still at about {123}<634> even after 97 % cold rolling. In the present paper, high purity Al containing 50 ppm Cu was cold rolled up to 99.4 % reduction in thickness and examined whether {112}<111> stable end orientation could be achieved experimentally. It was found that, with increasing rolling reduction above 98 %, {110}<112> decreased, while orientations in the range between {123}<634> and {112}<111> increased, suggesting that crystal rotation along the βfiber from {110}<112> toward {123}<634> and {112}<111> in fact took place. At higher rolling reductions, however, further rotation of this peak toward {112}<111> was extremely sluggish, and even at the highest rolling reduction, it could not arrive at {112}<111>. Such discrepancies between theoretical predictions and experimental observations should be ascribed to the development of dislocation substructures, which were formed by concurrent work hardening and dynamic recovery. Since such development of dislocation substructures are not taken into account in Taylor-Bishop-Hill’s theory, it seems that they can not correctly predict the development of rolling textures at very high rolling reductions, i. e. stable end orientations. On annealing specimens rolled above 98 % reduction in thickness, cube textures were very weak, suggesting that cube bands were almost completely rotated into other orientations during cold rolling. {325}<496>, which lay at an intermediate position between {123}<634> and {112}<111> along theβfiber, developed strongly in the recrystallization textures.


1990 ◽  
Vol 112 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Shou-Yan Lee ◽  
G. W. Schmid-Scho¨nbein

Although blood flow in the microcirculation of the rat skeletal muscle has negligible inertia forces with very low Reynolds number and Womersley parameter, time-dependent pressure and flow variations can be observed. Such phenomena include, for example, arterial flow overshoot following a step arterial pressure, a gradual arterial pressure reduction for a step flow, or hysteresis between pressure and flow when a pulsatile pressure is applied. Arterial and venous flows do not follow the same time course during such transients. A theoretical analysis is presented for these phenomena using a microvessel with distensible viscoelastic walls and purely viscous flow subject to time variant arterial pressures. The results indicate that the vessel distensibility plays an important role in such time-dependent microvascular flow and the effects are of central physiological importance during normal muscle perfusion. In-vivo whole organ pressure-flow data in the dilated rat gracilis muscle agree in the time course with the theoretical predictions. Hemodynamic impedances of the skeletal muscle microcirculation are investigated for small arterial and venous pressure amplitudes superimposed on an initial steady flow and pressure drop along the vessel.


2017 ◽  
Vol 31 (06) ◽  
pp. 1750039 ◽  
Author(s):  
Wentao Lee ◽  
Haixiang He ◽  
Maodu Chen

Employing the state-to-state time-dependent quantum wave packet method, the Au[Formula: see text]H2 reactive scattering with initial states [Formula: see text], [Formula: see text] and 1 were investigated. Total reaction probabilities, product state-resolved integral cross-sections (ICSs) and differential cross-sections (DCSs) were calculated up to collision energy of 4.5 eV. The numerical results show that total reaction probabilities and ICSs increase with increasing collision energies, and there is little effect to the reactive scattering processes from the rotational excitation of H2 molecule. Below collision energy of around 3.0 eV, the role of the potential well in the entrance channel is significant and the reactive scattering proceeds dominantly by an indirect process, which leads to a nearly symmetric shape of the DCSs. With collision energy higher than 4.0 eV, the reactive scattering proceeds through a direct process, which leads to a forward biased DCSs, and also a hotter rotational distributions of the products. Total ICS agrees with the results by the quasi-classical trajectories theory very well, which suggests that the quantum effects in this reactive process are not obvious. However, the agreement between the experimental total cross-section and our theoretical result is not so good. This may be due to the uncertainty of the experiment or/and the inaccuracy of the potential energy surface.


Author(s):  
M. J. Mohammad Fikry ◽  
Shinji Ogihara ◽  
Vladimir Vinogradov

Abstract Matrix cracking in CFRP laminates results in degradation of mechanical properties of the material and appearance of residual strains. In this study, the residual strains investigated are experimentally and analytically for CFRP [0/756]s laminates. The strain gauges were used in this study to measure the strains. Due to very small residual strains at the unloading condition, the residual strains were also measured at different stress levels for laminates with different crack densities and are compared with theoretical predictions. Time-dependent viscoelastic behavior of the material is also considered to accurately measure the residual strains due to the occurrence of matrix cracks. This was done by using the strain recovery test when the loads were stopped for 1–1.5 hours during unloading and the strain changes during these times were recorded. The experimental results of the residual strains are in reasonably good agreement with the theoretical predictions. The fiber non-linearity properties of the laminates may cause some experimental data to shift above the analytical line.


1958 ◽  
Vol 6 ◽  
pp. 61-70
Author(s):  
Yoshinari Nakagawa ◽  
Kevin H. Prendergast

This paper will summarize the experimental work at the University of Chicago on the problem of the onset of thermal instability in a layer of fluid heated from below. The purpose of this work has been to test certain theoretical predictions of the Rayleigh number at which instability sets in, and to determine the type of instability which appears at the critical point. The earlier experiments of this series were done at the hydrodynamics laboratory of the University of Chicago in connexion with a program of meteorological reseach[1, 2, 3, 4]. The current work is being done at the newly organized hydromagnetics laboratory of the Enrico Fermi Institute of Nuclear Studies. This laboratory utilizes the magnet of the old Chicago cyclotron, with pole pieces 92·7 cm in diameter and a gap of 22·1 cm. The magnet was reconstructed to allow the field strength to be varied from 0 to 13,000 gauss; the field is uniform to better than 1 % over the experimental area. The new laboratory is under the administrative supervision of Professors S. K. Allison and S. Chandrasekhar; the experiments are being done by Y. Nakagawa. The theoretical investigations are primarily the work of Chandrasekhar[5, 6, 7, 8, 9, 10] and it will be convenient to review some of his results before discussing the experiments.


2013 ◽  
Author(s):  
Hugo F. Martins ◽  
Sonia Martin-Lopez ◽  
Pedro Corredera ◽  
Pedro Salgado ◽  
Orlando Frazão ◽  
...  

We report the first observations of bifurcation routes to chaos in an all-optical resonator. Generation of associated deep and sustained Ikeda oscillation of the smooth CO 2 laser input pulses at twice the round-trip time of the Fabry-Perot resonator provides a high-frequency ( ca .0.1 GHz) passive optical modulator device. Results are in excellent agreement with our adaption of optical bistability theory to the time-dependent regime


2013 ◽  
Vol 11 (04) ◽  
pp. 1350038 ◽  
Author(s):  
HEBA KADRY ◽  
NORDIN ZAKARIA ◽  
LEE YEN CHEONG ◽  
MAHMOUD ABDEL-ATY

We study the dynamical properties of a cavity field coupling to a Cooper pair box (CPB). We assumed that the CPB is prepared initially in a mixed state with a coherent state for the field. By solving the time-dependent equations using the evolution operator, it shows that mean numbers of Cooper pairs is affected by the detuning. The mean number of Cooper pairs is further enhanced by the multi-photon processes in commonly used cavity field.


Sign in / Sign up

Export Citation Format

Share Document