potentially toxic element
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
Lei Tang ◽  
Yiyue Zhang ◽  
Shuai Ma ◽  
Changchun Yan ◽  
Huanhuan Geng ◽  
...  

Lead (Pb) isotopes have been widely used to identify and quantify Pb contamination in the environment. Here, the Pb isotopes, as well as the current contamination levels of Cu, Pb, Zn, Cr, Ni, Cd, As, and Hg, were investigated in soil and sediment from the historical gold mining area upstream of Miyun Reservoir, Beijing, China. The sediment had higher 206Pb/207Pb ratios (1.137 ± 0.0111) than unpolluted soil did (1.167 ± 0.0029), while the soil samples inside the mining area were much more variable (1.121 ± 0.0175). The mean concentrations (soil/sediment in mg·kg−1) of Pb (2470/42.5), Zn (181/113), Cu (199/36.7), Cr (117/68.8), Ni (40.4/28.9), Cd (0.791/0.336), As (8.52/5.10), and Hg (0.168/0.000343) characterized the soil/sediment of the studied area with mean Igeo values of the potentially toxic element (PTE) ranging from −4.71 to 9.59 for soil and from −3.39 to 2.43 for sediment. Meanwhile, principal component analysis (PCA) and hierarchical cluster analysis (HCA) coupled with Pearson’s correlation coefficient among PTEs indicated that the major source of the Cu, Zn, Pb, and Cd contamination was likely the mining activities. Evidence from Pb isotopic fingerprinting and a binary mixing model further confirmed that Pb contamination in soil and sediment came from mixed sources that are dominated by mining activity. These results highlight the persistence of PTE contamination in the historical mining site and the usefulness of Pb isotopes combined with multivariate statistical analysis to quantify contamination from mining activities.


2021 ◽  
pp. 112349
Author(s):  
Ayub Ebadi Fathabad ◽  
Hossein Tajik ◽  
Moslem Lari Najafi ◽  
Khadijeh Jafari ◽  
Amin Mousavi Khaneghah ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 558
Author(s):  
Modian Xie ◽  
Hongyi Li ◽  
Youwei Zhu ◽  
Jie Xue ◽  
Qihao You ◽  
...  

Potentially toxic element (PTE) pollution in farmland soils and crops is a serious cause of concern in China. To analyze the bioaccumulation characteristics of chromium (Cr), zinc (Zn), copper (Cu), and nickel (Ni) in soil-rice systems, 911 pairs of top soil (0–0.2 m) and rice samples were collected from an industrial city in Southeast China. Multiple linear regression (MLR), support vector machines (SVM), random forest (RF), and Cubist were employed to construct models to predict the bioaccumulation coefficient (BAC) of PTEs in soil–rice systems and determine the potential dominators for PTE transfer from soil to rice grains. Cr, Cu, Zn, and Ni contents in soil of the survey region were higher than corresponding background contents in China. The mean Ni content of rice grains exceeded the national permissible limit, whereas the concentrations of Cr, Cu, and Zn were lower than their thresholds. The BAC of PTEs kept the sequence of Zn (0.219) > Cu (0.093) > Ni (0.032) > Cr (0.018). Of the four algorithms employed to estimate the bioaccumulation of Cr, Cu, Zn, and Ni in soil–rice systems, RF exhibited the best performance, with coefficient of determination (R2) ranging from 0.58 to 0.79 and root mean square error (RMSE) ranging from 0.03 to 0.04 mg kg−1. Total PTE concentration in soil, cation exchange capacity (CEC), and annual average precipitation were identified as top 3 dominators influencing PTE transfer from soil to rice grains. This study confirmed the feasibility and advantages of machine learning methods especially RF for estimating PTE accumulation in soil–rice systems, when compared with traditional statistical methods, such as MLR. Our study provides new tools for analyzing the transfer of PTEs from soil to rice, and can help decision-makers in developing more efficient policies for regulating PTE pollution in soil and crops, and reducing the corresponding health risks.


Sign in / Sign up

Export Citation Format

Share Document