Field observations to establish the impact of fluvial flooding on potentially toxic element (PTE) mobility in floodplain soils

Author(s):  
Jessica Ponting ◽  
Anne Verhoef ◽  
Michael J. Watts ◽  
Tom Sizmur
2021 ◽  
Vol 14 (1-2) ◽  
pp. 47-57
Author(s):  
Samdandorj Manaljav ◽  
Andrea Farsang ◽  
Károly Barta ◽  
Zalán Tobak ◽  
Szabolcs Juhász ◽  
...  

Abstract Soil erosion is a main problem in sloping vineyards, which can dramatically affect soil quality and fertility. The present study aimed to evaluate the spatial patterns of selected physico-chemical soil characteristics and the soil’s potentially toxic element (PTE) contents in the context of erosion. The study was conducted in a 0.4 ha vineyard plot on a steep slope in Tállya, part of the wine-growing region of Tokaj-Hegyalja (Hungary). A total of 20 topsoil samples (0-10 cm) were collected and analysed for PTEs (B, Co, Ba, Sr, Mn, Ni, Cr, Pb, Zn, and Cu), soil pH (deionized water and KCl solution), particle-size distribution, soil organic matter (SOM), (nitrate+nitrite)-N, P2O5, and carbonate content. Among the selected PTEs, only Cu (125±27 mg/kg) exceeds the Hungarian standards set for soils and sediments (75 mg/kg) due to the long-term use of Cu-based pesticides in the vineyard. Examined PTEs are negatively correlated with the sand content of the topsoil, except for Mn, while the significant positive relationship with the clay content shows the role of clay in retaining PTEs in soil. SOM seems to play a minor role in binding PTEs, as Cu is the only element for which a significant correlation with the SOM content can be detected. The spatial distribution maps prepared by inverse distance weighting (IDW) and lognormal kriging (LK) methods show higher PTE contents at the summit and the shoulder of the hillslope and lower contents at the backslope and the footslope zones. The low slope gradients (0-5 degree) and the high contents of the coarse fraction (> 35%) likely protect the soil at the summit and the hillslope’s shoulder from excessive erosion-induced losses. While the reraising PTE contents at the toeslope are likely due to the deposition of fine soil particles (silt and clay). The highest SOM contents at the summit and the toeslope areas, and increased contents of the coarse fraction at the backslope, confirm the effects of soil erosion on the spatial distribution patterns of main soil quality indicators. Overall, the LK outperformed the IDW method in predicting the soil parameters in unsampled areas.


2020 ◽  
Author(s):  
Tom Sizmur ◽  
Justin Richardson

<p>Earthworms are ecosystem engineers, capable of modifying the soil environment they inhabit. Recent evidence indicates that they increase the mobility and availability of potentially toxic elements in soils, but the systematic synthesis of the evidence required to understand mechanisms and identify soils most susceptible to earthworm-induced potentially toxic element mobilisation is lacking. We undertook a meta-analysis of 43 peer reviewed journal articles, comprising 1185 pairwise comparisons to quantify the impact of earthworms on potentially toxic element mobility in bulk earthworm-inhabited soil and earthworm casts and on plant uptake and concentration. We find that earthworms mobilise potentially toxic elements primarily due to the passage of soil through the earthworm gut and that this results in an increase in the concentration and uptake by plants. Earthworms mobilise potentially toxic elements in uncontaminated soils to a greater extent than contaminated soils. Soils with either very low (<2%) or very high (>10%) soil organic matter content are most susceptible to earthworm-induced potentially toxic element mobilisation. These findings have important implications for exotic earthworms burdening plants with toxic metals, but also offer a promising phenomenon that, if harnessed, may help to alleviate micronutrient deficiencies in degraded soils.</p>


1995 ◽  
Vol 32 (9-10) ◽  
pp. 197-204
Author(s):  
G. C. Christodoulou ◽  
I. Ioakeim ◽  
K. Ioannou

The paper presents a numerical modeling study aimed at a preliminary assessment of the impact of the planned sea outfall of the city of Limassol, Cyprus, on the waters of Akrotiri bay. First the local meteorological and oceanographic conditions as well as the loading characteristics are briefly reviewed. Two-dimensional finite element hydrodynamic and dispersion models are subsequently applied to the study area. The results of the former show an eastbound flow pattern under the prevailing westerly winds, in general agreement with available field observations. The spread of BOD and N under continuous loading is then examined for eastward as well as for westward flow as an indicator for the extent of pollution to be expected. The computed concentrations are generally low and confined to the shallower parts of the bay.


2021 ◽  
Vol 270 ◽  
pp. 116196
Author(s):  
Bifeng Hu ◽  
Shuai Shao ◽  
Hao Ni ◽  
Zhiyi Fu ◽  
Mingxiang Huang ◽  
...  

Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 317
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

The goal of this research was to characterize the impact of invasive riparian vegetation on burn severity patterns and fluvial topographic change in an urban Mediterranean riverine system (Med-sys) after fire in San Diego, California. We assessed standard post-fire metrics under urban conditions with non-native vegetation and utilized field observations to quantify vegetation and fluvial geomorphic processes. Field observations noted both high vegetation loss in the riparian area and rapidly resprouting invasive grass species such as Arundo donax (Giant Reed) after fire. Satellite-based metrics that represent vegetation biomass underestimated the initial green canopy loss, as did volumetric data derived from three-dimensional terrestrial laser scanning data. Field measurements were limited to a small sample size but demonstrated that the absolute maximum topographic changes were highest in stands of Arundo donax (0.18 to 0.67 m). This work is the first quantification of geomorphic alterations promoted by non-native vegetation after fire and highlights potential grass–fire feedbacks that can contribute to geomorphic disruption. Our results support the need for ground-truthing or higher resolution when using standard satellite-based indices to assess post-fire conditions in urban open spaces, especially when productive invasive vegetation are present, and they also emphasize restoring urban waterways to native vegetation conditions.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Tobias Holt ◽  
Janek Greskowiak ◽  
Stephan L. Seibert ◽  
Gudrun Massmann

The drinking water supply on barrier islands largely depends on freshwater lenses, which are also highly relevant for island ecosystems. The freshwater lens presented in this study is currently developing (since the 1970s) below the very young eastern part of the North Sea barrier island Spiekeroog, the so-called “Ostplate.” Due to the absence of coastal protection measures, formation, shape, and extent of the freshwater lens below the Ostplate are unaffected by human activities but exposed to dynamic changes, e.g., geomorphological variations and storm tides. The main aim of this paper was to reconstruct the evolution of the freshwater lens over several decades in order to explain the present-day groundwater salinity distribution. In addition, the study assessed the impact of geomorphological variations and storm tides on the freshwater lens formation. Detailed field observations were combined with a transient 2-D density-dependent modeling approach. Both field observations and simulations show an asymmetric freshwater lens after ~42 years of formation, whereby the horizontal extent is limited by the elevated dune area. The simulations indicate that the young freshwater lens has nearly reached quasi-steady-state conditions mainly due to the continuous mixing with seawater infiltrating during storm tides, which inhibits further growth of the freshwater lens on the narrow island. The findings further show that (i) a neglection of storm tides results in a significant overestimation of the freshwater lens extent, and (ii) the modeled present groundwater salinity distribution and shape of the freshwater lens are predominantly determined by the position and extent of the elevated dune area at the past ~20 years. Hence, annual storm tides have to be directly implemented into numerical models to explain the groundwater salinity distribution and the extent of young freshwater lenses located in highly dynamic tidal environments.


Sign in / Sign up

Export Citation Format

Share Document