larval diapause
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 6)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Jack da Silva

Although indirect selection through relatives (kin selection) can explain the evolution of effectively sterile offspring that act as helpers at the nest (eusociality) in the ants, bees, and stinging wasps (aculeate Hymenoptera), the genetic, ecological, and life history conditions that favor transitions to eusociality are poorly understood. In this study, ancestral state reconstruction on recently published phylogenies was used to identify the independent transitions to eusociality in each of the taxonomic families that exhibit eusociality. Semisociality, in which a single nest co-foundress monopolizes reproduction, often precedes eusociality outside the vespid wasps. Such a route to eusociality, which is consistent with groups consisting of a mother and her daughters (subsocial) at some stage and ancestral monogamy, is favored by the haplodiploid genetic sex determination of the Hymenoptera (diploid females and haploid males) and thus may explain why eusociality is common in the Hymenoptera. Ancestral states were also reconstructed for life history characters that have been implicated in the origins of eusociality. A loss of larval diapause during unfavorable seasons or conditions precedes, or coincides with, all but one transition to eusociality. This pattern is confirmed using phylogenetic tests of associations between state transition rates for sweat bees and apid bees. A loss of larval diapause may simply reflect the subsocial route to eusociality since subsociality is defined as females interacting with their adult daughters. A loss of larval diapause and a gain of subsociality may be associated with an extended breeding season that permits the production of at least two broods, which is necessary for helpers to evolve. Adult diapause may also lower the selective barrier to a first-brood daughter becoming a helper. Obligate eusociality meets the definition of a major evolutionary transition, and such transitions have occurred five times in the Hymenoptera.


Author(s):  
Gianni Gilioli ◽  
Giorgio Sperandio ◽  
Anna Simonetto ◽  
Michele Colturato ◽  
Andrea Battisti ◽  
...  

AbstractWe developed a mechanistic, stage-structured model simulating the phenology of Popillia japonica. The model simulates the influence of soil temperature on the larval diapause termination and on the development rate function of post-overwintering larvae and pupae. Model parameters are estimated based on literature evidence for pupae development and on a parameterisation process that allows estimating parameters for larval diapause termination and for the development rate function (and the related uncertainty) of post-overwintering larvae. Data used for model parameterisation and validation refer to time-series adult trap catches collected during the P. japonica monitoring programme performed by the Phytosanitary Service of Lombardy Region within the infested area in Lombardy (Italy) from 2015 to 2019. A total of 12 randomly selected locations are used to estimate biologically realistic model parameters (parameterisation dataset). We applied a Jackknife nonparametric resampling procedure on the parameterisation dataset to quantify uncertainty associated with parameters’ estimates. Parameterised model is then validated on time-series adult trap catches data referring to a different set of 12 randomly selected locations (validation dataset) surveyed in Lombardy. The model successfully predicted the beginning of adult emergence and the overall curve of adult emergence in the validation dataset. The model presented can support the definition of the best timing for the implementation of monitoring and control activities for the local and the area-wide management of P. japonica.


2021 ◽  
Vol 84 ◽  
pp. 87-102
Author(s):  
Vladimir E. Gokhman ◽  
Matvey I. Nikelshparg

In the southeast of European Russia, the gall wasp Aulacidea hieracii (Bouché, 1834) is attacked by ten parasitoid species, including Eupelmus (Eupelmus) microzonus Förster, 1860 and E. (Macroneura) messene Walker, 1839. Although both members of the genus Eupelmus Dalman, 1820 are idiobiont ectoparasitoids, they demonstrate different life-history strategies in respect to many bionomic features. Specifically, E. messene is represented by brachypterous thelytokous females which lay single eggs directly onto the host body. This species can parasitize both concealed and exposed larvae and pupae of A. hieracii, but fails to attack its primary parasitoids. On the contrary, arrhenotokous males and females of E. microzonus are fully winged. These parasitoids usually lay several eggs per host which are placed onto the wall of the host chamber and covered with a particular fibrous substance. E. microzonus never parasitizes pupae or exposed larvae, although it can readily attack concealed larvae of A. hieracii and its primary parasitoids. In addition, hibernating individuals of E. messene undergo obligatory larval diapause, but those of E. microzonus are able to develop without exposure to subzero temperatures. All these data collectively suggest that the former species is highly specialized to exploit A. hieracii as a host, whereas the latter one mostly exhibits the so-called morphotypical specialization. These different strategies allow E. messene and E. microzonus to coexist on the same host species, as a local specialist and a more or less evenly distributed generalist, respectively.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jessica Dittmer ◽  
Robert M. Brucker

AbstractBackgroundThe life cycles of many insect species include an obligatory or facultative diapause stage with arrested development and low metabolic activity as an overwintering strategy. Diapause is characterised by profound physiological changes in endocrine activity, cell proliferation and nutrient metabolism. However, little is known regarding host-microbiome interactions during diapause, despite the importance of bacterial symbionts for host nutrition and development. In this work, we investigated (i) the role of the microbiome for host nutrient allocation during diapause and (ii) the impact of larval diapause on microbiome dynamics in the parasitoid waspNasonia vitripennis, a model organism for host-microbiome interactions.ResultsOur results demonstrate that the microbiome is essential for host nutrient allocation during diapause inN. vitripennis, as axenic diapausing larvae had consistently lower glucose and glycerol levels than conventional diapausing larvae, especially when exposed to cold temperature. In turn, microbiome composition was altered in diapausing larvae, potentially due to changes in the surrounding temperature, host nutrient levels and a downregulation of host immune genes. Importantly, prolonged larval diapause had a transstadial effect on the adult microbiome, with unknown consequences for host fitness. Notably, the most dominant microbiome member,Providenciasp., was drastically reduced in adults after more than 4 months of larval diapause, while potential bacterial pathogens increased in abundance.ConclusionThis work investigates host-microbiome interactions during a crucial developmental stage, which challenges both the insect host and its microbial associates. The impact of diapause on the microbiome is likely due to several factors, including altered host regulatory mechanisms and changes in the host environment.


Sign in / Sign up

Export Citation Format

Share Document