scholarly journals When your host shuts down: larval diapause impacts host-microbiome interactions in Nasonia vitripennis

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jessica Dittmer ◽  
Robert M. Brucker

AbstractBackgroundThe life cycles of many insect species include an obligatory or facultative diapause stage with arrested development and low metabolic activity as an overwintering strategy. Diapause is characterised by profound physiological changes in endocrine activity, cell proliferation and nutrient metabolism. However, little is known regarding host-microbiome interactions during diapause, despite the importance of bacterial symbionts for host nutrition and development. In this work, we investigated (i) the role of the microbiome for host nutrient allocation during diapause and (ii) the impact of larval diapause on microbiome dynamics in the parasitoid waspNasonia vitripennis, a model organism for host-microbiome interactions.ResultsOur results demonstrate that the microbiome is essential for host nutrient allocation during diapause inN. vitripennis, as axenic diapausing larvae had consistently lower glucose and glycerol levels than conventional diapausing larvae, especially when exposed to cold temperature. In turn, microbiome composition was altered in diapausing larvae, potentially due to changes in the surrounding temperature, host nutrient levels and a downregulation of host immune genes. Importantly, prolonged larval diapause had a transstadial effect on the adult microbiome, with unknown consequences for host fitness. Notably, the most dominant microbiome member,Providenciasp., was drastically reduced in adults after more than 4 months of larval diapause, while potential bacterial pathogens increased in abundance.ConclusionThis work investigates host-microbiome interactions during a crucial developmental stage, which challenges both the insect host and its microbial associates. The impact of diapause on the microbiome is likely due to several factors, including altered host regulatory mechanisms and changes in the host environment.

2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1565
Author(s):  
María Belén D’Amico ◽  
Guillermo R. Chantre ◽  
Guillermo L. Calandrini ◽  
José L. González-Andújar

Population models are particularly helpful for understanding long-term changes in the weed dynamics associated with integrated weed management (IWM) strategies. IWM practices for controlling L. rigidum are of high importance, mainly due to its widespread resistance that precludes chemical control as a single management method. The objective of this contribution is to simulate different IWM scenarios with special emphasis on the impact of different levels of barley sowing densities on L. rigidum control. To this effect, a weed–crop population model for both L. rigidum and barley life cycles was developed. Our results point out: (i) the necessity of achieving high control efficiencies (>99%), (ii) that the increase of twice the standard sowing density of barley resulted in a reduction of 23.7% of the weed density, (iii) non-herbicide-based individual methods, such as delayed sowing and weed seed removal at harvest, proved to be inefficient for reducing drastically weed population, (iv) the implementation of at least three control tactics (seed removal, delay sowing and herbicides) is required for weed infestation eradication independently of the sowing rate, and (v) the effect of an increase in the sowing density is diluted as a more demanding weed control is reached. Future research should aim to disentangle the effect of different weed resistance levels on L. rigidum population dynamics and the required efficiencies for more sustainable IWM programs.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 961-972 ◽  
Author(s):  
Marie-Jeanne Perrot-Minnot ◽  
Li Rong Guo ◽  
John H Werren

Abstract Wolbachia are cytoplasmically inherited bacteria responsible for reproductive incompatibility in a wide range of insects. There has been little exploration, however, of within species Wolbachia polymorphisms and their effects on compatibility. Here we show that some strains of the parasitic wasp Nasonia vitripennis are infected with two distinct bacterial strains (A and B) whereas others are singly infected (A or B). Double and single infections are confirmed by both PCR amplification and Southern analysis of genomic DNA. Furthermore, it is shown that prolonged larval diapause (the overwintering stage of the wasp) of a double-infected strain can lead to stochastic loss of one or both bacterial strains. After diapause of a double-infected line, sublines were produced with AB, A only, B only or no Wolbachia. A and B sublines are bidirectionally incompatible, whereas males from AB lines are unidirectionally incompatible with females of A and B sublines. Results therefore show rapid development of bidirectional incompatibility within a species due to segregation of associated symbiotic bacteria.


2020 ◽  
Vol 117 (20) ◽  
pp. 10935-10945 ◽  
Author(s):  
Shanta Karki ◽  
Kathrina Castillo ◽  
Zhaolan Ding ◽  
Olivia Kerr ◽  
Teresa M. Lamb ◽  
...  

The circadian clock in eukaryotes controls transcriptional and posttranscriptional events, including regulation of the levels and phosphorylation state of translation factors. However, the mechanisms underlying clock control of translation initiation, and the impact of this potential regulation on rhythmic protein synthesis, were not known. We show that inhibitory phosphorylation of eIF2α (P-eIF2α), a conserved translation initiation factor, is clock controlled in Neurospora crassa, peaking during the subjective day. Cycling P-eIF2α levels required rhythmic activation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2), and rhythmic activation of CPC-3 was abolished under conditions in which the levels of charged tRNAs were altered. Clock-controlled accumulation of P-eIF2α led to reduced translation during the day in vitro and was necessary for the rhythmic synthesis of select proteins in vivo. Finally, loss of rhythmic P-eIF2α levels led to reduced linear growth rates, supporting the idea that partitioning translation to specific times of day provides a growth advantage to the organism. Together, these results reveal a fundamental mechanism by which the clock regulates rhythmic protein production, and provide key insights into how rhythmic translation, cellular energy, stress, and nutrient metabolism are linked through the levels of charged versus uncharged tRNAs.


2007 ◽  
Vol 139 (5) ◽  
pp. 678-684 ◽  
Author(s):  
B.H. King

AbstractWhen habitat quality is variable, there should be strong selection for the ability to detect and respond to the variation. Adult females of the parasitoid wasp Nasonia vitripennis (Walker) are known to increase their restlessness (the proportion of time in locomotion) both during and after exposure to a poor quality host. Doing so provides a mechanism for leaving a poor host and potentially finding a better host. This study examined whether restlessness also changes in response to competition as indicated by the presence of adult conspecifics. Both restlessness and the probability of dispersing across an inhospitable environment were greater when a female was with another female than when she was alone. However, restlessness did not remain elevated after the other female was removed. In contrast with females, restlessness of males did not increase either during or after exposure to other males, and the probability of dispersing across an inhospitable environment was unaffected by the presence of another male. The difference between females and males may be related to differences in dispersal ability and in the abundance and distribution of hosts versus mates.


Author(s):  
Sergey Bushuyev ◽  
Denis Bushuiev ◽  
Victoria Bushuieva ◽  
Olena Verenych

The problem of creating effective models, methods and tools for strategic management of projects and programs for the development of organizations in the transition to a circular economy. Global trends in the development of organizations prove that the world is transforming with acceleration. The life cycle of knowledge and technologies for managing complex projects and programs is significantly reduced. The technical and technological complexity of organizational development projects increases due to innovations. These trends create significant challenges in the development of project management systems and programs for the formation of a circular economy in Ukraine. This is especially true of projects and programs in conditions of uncertainty about the impact of COVID 19 and anticipation of a global crisis after a pandemic. Today, the application of proven best practices (benchmarking) is no longer a way forward. Forming a vision, goals and strategy for the implementation of organizational development projects in advance makes our actions rigid, not flexible. When creating a project or program begins with focusing on what is valuable to our customers and the country, it is enough for us to use best practices. But the complexity and innovative orientation of development projects of organizations in the transition to a circular economy creates a number of challenges. One of the answers to these challenges is cost-effective work on project management and development programs, taking into account the trends of transition to a circular economy. Project management teams learn to distinguish between what is valuable and what doesn't matter, this is the path that management methodologies have taken for decades. A number of projects have taken the first steps in implementing the necessary cost-effective / flexible transition that supports sustainability and adaptability to turbulent environmental changes. In the conditions of modern destructive economic relations in the world community the problem of a choice of strategy of projects as drivers of development of the organizations is vital. One of the key approaches to the development of the EU is the transition to a circular economy with maximum utilization of both waste products and projects, and the disposal of project products after the end of product life cycles.


Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 701-710 ◽  
Author(s):  
M.A. Pultz ◽  
J.N. Pitt ◽  
N.M. Alto

Insect axis formation is best understood in Drosophila melanogaster, where rapid anteroposterior patterning of zygotic determinants is directed by maternal gene products. The earliest zygotic control is by gap genes, which determine regions of several contiguous segments and are largely conserved in insects. We have asked genetically whether early zygotic patterning genes control similar anteroposterior domains in the parasitoid wasp Nasonia vitripennis as in Drosophila. Nasonia is advantageous for identifying and studying recessive zygotic lethal mutations because unfertilized eggs develop as males while fertilized eggs develop as females. Here we describe recessive zygotic mutations identifying three Nasonia genes: head only mutant embryos have posterior defects, resembling loss of both maternal and zygotic Drosophila caudal function; headless mutant embryos have anterior and posterior gap defects, resembling loss of both maternal and zygotic Drosophila hunchback function; squiggy mutant embryos develop only four full trunk segments, a phenotype more severe than those caused by lack of Drosophila maternal or zygotic terminal gene functions. These results indicate greater dependence on the zygotic genome to control early patterning in Nasonia than in the fly.


Author(s):  
GwangKi Min ◽  
Eun Suk Suh ◽  
Katja Hölttä-Otto

Complex systems often have long life cycles with requirements that are likely to change over time. Therefore, it is important to be able to adapt the system accordingly over time. This is often accomplished by infusing new technologies into the host system in order to update or improve overall system performance. However, technology infusion often results in a disruption in the host system. This can take the form of a system redesign or a change in the inherent attributes of the system. In this study, we analyzed the impact of technology infusion on system attributes, specifically the complexity and modularity. Two different systems that were infused with new technologies were analyzed for changes in complexity and modularity.


Sign in / Sign up

Export Citation Format

Share Document