bag cell neurons
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 0)

H-INDEX

20
(FIVE YEARS 0)

Author(s):  
Raymond M. Sturgeon ◽  
Alamjeet K. Chauhan ◽  
Neil S. Magoski

2016 ◽  
Vol 115 (5) ◽  
pp. 2615-2634 ◽  
Author(s):  
Christopher J. Groten ◽  
Jonathan T. Rebane ◽  
Heather M. Hodgson ◽  
Alamjeet K. Chauhan ◽  
Gunnar Blohm ◽  
...  

After Ca2+ influx, mitochondria can sequester Ca2+ and subsequently release it back into the cytosol. This form of Ca2+-induced Ca2+ release (CICR) prolongs Ca2+ signaling and can potentially mediate activity-dependent plasticity. As Ca2+ is required for its subsequent release, Ca2+ removal systems, like the plasma membrane Ca2+-ATPase (PMCA), could impact CICR. Here we examine such a role for the PMCA in the bag cell neurons of Aplysia californica. CICR is triggered in these neurons during an afterdischarge and is implicated in sustaining membrane excitability and peptide secretion. Somatic Ca2+ was measured from fura-PE3-loaded cultured bag cell neurons recorded under whole cell voltage clamp. Voltage-gated Ca2+ influx was elicited with a 5-Hz, 1-min train, which mimics the fast phase of the afterdischarge. PMCA inhibition with carboxyeosin or extracellular alkalization augmented the effectiveness of Ca2+ influx in eliciting mitochondrial CICR. A Ca2+ compartment model recapitulated these findings and indicated that disrupting PMCA-dependent Ca2+ removal increases CICR by enhancing mitochondrial Ca2+ loading. Indeed, carboxyeosin augmented train-evoked mitochondrial Ca2+ uptake. Consistent with their role on Ca2+ dynamics, cell labeling revealed that the PMCA and mitochondria overlap with Ca2+ entry sites. Finally, PMCA-dependent Ca2+ extrusion did not impact endoplasmic reticulum-dependent Ca2+ removal or release, despite the organelle residing near Ca2+ entry sites. Our results demonstrate that Ca2+ removal by the PMCA influences the propensity for stimulus-evoked CICR by adjusting the amount of Ca2+ available for mitochondrial Ca2+ uptake. This study highlights a mechanism by which the PMCA could impact activity-dependent plasticity in the bag cell neurons.


2016 ◽  
Vol 115 (5) ◽  
pp. 2635-2648 ◽  
Author(s):  
Sean H. White ◽  
Raymond M. Sturgeon ◽  
Neil S. Magoski

Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K+ with Cs+. Consistent with an underlying mechanism of direct inhibition of one or more K+ channels, nicotine was found to rapidly reduce the fast-inactivating A-type K+ current as well as both components of the delayed-rectifier K+ current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K+ channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time.


2015 ◽  
Vol 113 (3) ◽  
pp. 808-821 ◽  
Author(s):  
Zahra Dargaei ◽  
Dominic Standage ◽  
Christopher J. Groten ◽  
Gunnar Blohm ◽  
Neil S. Magoski

Electrical transmission is a dynamically regulated form of communication and key to synchronizing neuronal activity. The bag cell neurons of Aplysia are a group of electrically coupled neuroendocrine cells that initiate ovulation by secreting egg-laying hormone during a prolonged period of synchronous firing called the afterdischarge. Accompanying the afterdischarge is an increase in intracellular Ca2+ and the activation of protein kinase C (PKC). We used whole cell recording from paired cultured bag cell neurons to demonstrate that electrical coupling is regulated by both Ca2+ and PKC. Elevating Ca2+ with a train of voltage steps, mimicking the onset of the afterdischarge, decreased junctional current for up to 30 min. Inhibition was most effective when Ca2+ entry occurred in both neurons. Depletion of Ca2+ from the mitochondria, but not the endoplasmic reticulum, also attenuated the electrical synapse. Buffering Ca2+ with high intracellular EGTA or inhibiting calmodulin kinase prevented uncoupling. Furthermore, activating PKC produced a small but clear decrease in junctional current, while triggering both Ca2+ influx and PKC inhibited the electrical synapse to a greater extent than Ca2+ alone. Finally, the amplitude and time course of the postsynaptic electrotonic response were attenuated after Ca2+ influx. A mathematical model of electrically connected neurons showed that excessive coupling reduced recruitment of the cells to fire, whereas less coupling led to spiking of essentially all neurons. Thus a decrease in electrical synapses could promote the afterdischarge by ensuring prompt recovery of electrotonic potentials or making the neurons more responsive to current spreading through the network.


2014 ◽  
Vol 112 (11) ◽  
pp. 2680-2696 ◽  
Author(s):  
Zahra Dargaei ◽  
Phillip L. W. Colmers ◽  
Heather M. Hodgson ◽  
Neil S. Magoski

In neuroendocrine cells, hormone release often requires a collective burst of action potentials synchronized by gap junctions. This is the case for the electrically coupled bag cell neurons in the reproductive system of the marine snail, Aplysia californica. These neuroendocrine cells are found in two clusters, and fire a synchronous burst, called the afterdischarge, resulting in neuropeptide secretion and the triggering of ovulation. However, the physiology and pharmacology of the bag cell neuron electrical synapse are not completely understood. As such, we made dual whole cell recordings from pairs of electrically coupled cultured bag cell neurons. The junctional current was nonrectifying and not influenced by postsynaptic voltage. Furthermore, junctional conductance was voltage independent and, not surprisingly, strongly correlated with coupling coefficient magnitude. The electrical synapse also acted as a low-pass filter, although under certain conditions, electrotonic potentials evoked by presynaptic action potentials could drive postsynaptic spikes. If coupled neurons were stimulated to spike simultaneously, they presented a high degree of action potential synchrony compared with not-coupled neurons. The electrical synapse failed to pass various intracellular dyes, but was permeable to Cs+, and could be inhibited by niflumic acid, meclofenamic acid, or 5-nitro-2-(3-phenylpropylamino)benzoic acid. Finally, extracellular and sharp-electrode recording from the intact bag cell neuron cluster showed that these pharmacological uncouplers disrupted both electrical coupling and afterdischarge generation in situ. Thus electrical synapses promote bag cell neuron firing synchrony and may allow for electrotonic spread of the burst through the network, ultimately contributing to propagation of the species.


2014 ◽  
Vol 112 (2) ◽  
pp. 446-462 ◽  
Author(s):  
Sean H. White ◽  
Christopher J. Carter ◽  
Neil S. Magoski

Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca2+ permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Callen Hyland ◽  
Aaron F. Mertz ◽  
Paul Forscher ◽  
Eric Dufresne

2012 ◽  
Vol 23 (24) ◽  
pp. 4833-4848 ◽  
Author(s):  
Xiao-Feng Zhang ◽  
Callen Hyland ◽  
David Van Goor ◽  
Paul Forscher

Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca2+; however, mechanistic roles for Ca2+ in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca2+ → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca2+ release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT–dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.


Sign in / Sign up

Export Citation Format

Share Document