scholarly journals Nutrient restriction, inducer of yeast meiosis, induces meiotic initiation in mammals

2020 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Sumedha Gunewardena ◽  
Ning Wang

ABSTRACTFrom yeasts to mammals, the molecular machinery and chromosome structures carrying out meiosis are frequently conserved. However, the signal to initiate meiosis appears divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA), a chordate morphogen, is necessary but not sufficient to induce meiotic initiation in mammalian germ cells via its target, Stra8. Here, using cultured mouse male germline stem cells without the support of gonadal somatic cells, we show that nutrient restriction in combination with RA robustly induces Spo11-dependent meiotic DNA double strand breaks (DSBs) and Stra8-dependent meiotic gene programs recapitulating those of early meiosis in vivo. Moreover, a distinct network of 11 nutrient restriction-upregulated transcription factor genes was identified, whose expression does not require RA and is associated with early meiosis in vivo. Thus, our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating transcriptional factors for meiotic gene programs, and provides an in vitro platform to derive haploid gametes in culture.One Sentence Summarynutrient restriction synergizes with retinoic acid to induce mammalian meiotic initiation

2020 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Sumedha Gunewardena ◽  
Ning Wang

Abstract From yeasts to mammals, the molecular machinery and chromosome structures carrying out meiosis are frequently conserved. However, the signal to initiate meiosis appears divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA), a chordate morphogen, and its target, Stra8, are necessary but not sufficient to induce meiotic initiation in mammalian germ cells. Here, by using a combination of genetic, transcriptomic, cytologic approaches in mouse primary spermatogonial culture without the support of gonadal somatic cells, we show that nutrient restriction is both necessary and sufficient to robustly induce Spo11-dependent meiotic DNA double strand breaks (DSBs) and Stra8-dependent meiotic gene programs with RA, recapitulating those of early meiosis in vivo. Moreover, distinct network of 11 nutrient restriction-upregulated transcription factor genes was identified, whose expression does not require RA and is associated with early meiosis in vivo. Thus, our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating key transcriptional factors for meiotic gene programs, and provides an in vitro platform to recapitulate meiotic initiation that will facilitate research and haploid gamete production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhang ◽  
Sumedha Gunewardena ◽  
Ning Wang

AbstractThe molecular machinery and chromosome structures carrying out meiosis are frequently conserved from yeast to mammals. However, signals initiating meiosis appear divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA) and its target Stra8 have been shown to be necessary but not sufficient to induce meiotic initiation in mammalian germ cells. Here, we use primary culture of mouse undifferentiated spermatogonia without the support of gonadal somatic cells to show that nutrient restriction in combination with RA is sufficient to induce Stra8- and Spo11-dependent meiotic gene and chromosome programs that recapitulate the transcriptomic and cytologic features of in vivo meiosis. We demonstrate that neither nutrient restriction nor RA alone exerts these effects. Moreover, we identify a distinctive network of 11 nutrient restriction-upregulated transcription factor genes, which are associated with early meiosis in vivo and whose expression does not require RA. Our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating key transcription factor genes for the meiotic gene program and provides an in vitro platform for meiotic induction that could facilitate research and haploid gamete production.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaopeng Hu ◽  
Hu Wang ◽  
Geng. G. Tian ◽  
Changliang Hou ◽  
Bo Xu ◽  
...  

Abstract Background During male meiosis, the Y chromosome can form perfect pairing with the X chromosome. However, it is unclear whether mammalian Female germline stem cells (FGSCs) without a Y chromosome can transdifferentiate into functional haploid spermatid-like cells (SLCs). Results We found that spermatogenesis was restarted by transplanting FGSCs into Kitw/wv mutant testes. Complete meiosis and formation of SLCs was induced in vitro by testicular cells of Kitw/wv mutant mice, cytokines and retinoic acid. Healthy offspring were produced by sperm and SLCs derived from the in vivo and in vitro transdifferentiation of FGSCs, respectively. Furthermore, high-throughput chromosome conformation capture sequencing(Hi-C-seq) and “bivalent” (H3K4me3-H3K27me3) micro chromatin immunoprecipitation sequencing (μChIP-seq) experiments showed that stimulated by retinoic acid gene 8 (STRA8)/protamine 1 (PRM1)-positive transdifferentiated germ cells (tGCs) and male germ cells (mGCs) display similar chromatin dynamics and chromatin condensation during in vitro spermatogenesis. Conclusion This study demonstrates that sperm can be produced from FGSCs without a Y chromosome. This suggests a strategy for dairy cattle breeding to produce only female offspring with a high-quality genetic background.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1202
Author(s):  
Bojjibabu Chidipi ◽  
Syed Islamuddin Shah ◽  
Michelle Reiser ◽  
Manasa Kanithi ◽  
Amanda Garces ◽  
...  

In the heart, mitochondrial homeostasis is critical for sustaining normal function and optimal responses to metabolic and environmental stressors. Mitochondrial fusion and fission are thought to be necessary for maintaining a robust population of mitochondria, and disruptions in mitochondrial fission and/or fusion can lead to cellular dysfunction. The dynamin-related protein (DRP1) is an important mediator of mitochondrial fission. In this study, we investigated the direct effects of the micronutrient retinoid all-trans retinoic acid (ATRA) on the mitochondrial structure in vivo and in vitro using Western blot, confocal, and transmission electron microscopy, as well as mitochondrial network quantification using stochastic modeling. Our results showed that ATRA increases DRP1 protein levels, increases the localization of DRP1 to mitochondria in isolated mitochondrial preparations. Our results also suggested that ATRA remodels the mitochondrial ultrastructure where the mitochondrial area and perimeter were decreased and the circularity was increased. Microscopically, mitochondrial network remodeling is driven by an increased rate of fission over fusion events in ATRA, as suggested by our numerical modeling. In conclusion, ATRA results in a pharmacologically mediated increase in the DRP1 protein. It also results in the modulation of cardiac mitochondria by promoting fission events, altering the mitochondrial network, and modifying the ultrastructure of mitochondria in the heart.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 515-525 ◽  
Author(s):  
Allison P Davis ◽  
Lorraine S Symington

Abstract The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.


2005 ◽  
Vol 16 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Evaggelia S. Arsenou ◽  
Evangelia P. Papadimitriou ◽  
Eleni Kliafa ◽  
Maria Hountala ◽  
Sotiris S. Nikolaropoulos

2019 ◽  
Author(s):  
Luiza Da Cunha Stankevicins ◽  
Marta Urbanska ◽  
Daniel AD. Flormann ◽  
Emmanuel Terriac ◽  
Zahra Mostajeran ◽  
...  

AbstractDendritic cells use amoeboid migration through constricted passages to reach the lymph nodes, and this homing function is crucial for immune responses. Amoeboid migration requires mechanical resilience, however, the underlying molecular mechanisms for this type of migration remain unknown. Because vimentin intermediate filaments (IFs) and microfilaments regulate adhesion-dependent migration in a bidirectional manner, we analyzed if they exert a similar control on amoeboid migration. Vimentin was required for cellular resilience, via a joint interaction between vimentin IFs and F-actin. Reduced actin mobility in the cell cortex of vimentin-reduced cells indicated that vimentin promotes Factin subunit exchange and dynamics. These mechano-dynamic alterations in vimentin-deficient dendritic cells impaired amoeboid migration in confined environments in vitro and blocked lymph node homing in mouse experiments in vivo. Correct nuclear positioning is important in confined amoeboid migration both to minimize resistance and to avoid DNA damage. Vimentin-deficiency also led to DNA double strand breaks in the compressed dendritic cells, pointing to a role of vimentin in nuclear positioning. Together, these observations show that vimentin IF-microfilament interactions provide both the specific mechano-dynamics required for dendritic cell migration and the protection the genome needs in compressed spaces.Summary statementVimentin — in joint action with actin — mediates the mechanical stiffness of cells required for amoeboid cell migration through confined spaces and protects the nucleus from DNA damage.


Oncotarget ◽  
2016 ◽  
Vol 7 (29) ◽  
pp. 46028-46041 ◽  
Author(s):  
Farzaneh Atashrazm ◽  
Ray M. Lowenthal ◽  
Joanne L. Dickinson ◽  
Adele F. Holloway ◽  
Gregory M. Woods

2004 ◽  
Vol 46 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Sussie Dalvin ◽  
Katsumi Komatsuzaki ◽  
Mark A. Anselmo ◽  
David E. Kling ◽  
Jay J. Schnitzer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document