scholarly journals A duplicated copy of the meiotic gene ZIP4 preserves up to 50% pollen viability and grain number in polyploid wheat

2021 ◽  
Author(s):  
Abdul Kader Alabdullah ◽  
Graham Moore ◽  
Azahara C. Martín

SummaryAlthough most flowering plants are polyploid, little is known of how the meiotic process evolved to stabilise and preserve polyploid fertility. On wheat polyploidisation, the major meiotic gene ZIP4 on chromosome 3B duplicated onto 5B and subsequently diverged. This 5B meiotic gene copy (TaZIP4-B2) was recently shown to promote homologous pairing, synapsis and crossover, and suppress homoeologous crossover. We therefore suspected that these stabilising effects on meiosis could be important for the preservation of wheat polyploid fertility.A CRISPR Tazip4-B2 mutant was exploited to assess the contribution of the 5B duplicated ZIP4 copy in maintaining pollen viability and grain setting.Analysis demonstrated abnormalities in 56% of meiocytes in the Tazip4-B2 mutant, with micronuclei in 50% of tetrads, reduced size in 48% of pollen grains and a near 50% reduction in grain number. Further studies showed that most of the reduced grain number resulted from pollination with less viable pollen, suggesting that the stabilising effect of TaZIP4-B2 on meiosis has a greater consequence in subsequent male, rather than female gametogenesis.These studies reveal the extraordinary value of the wheat chromosome 5B TaZIP4-B2 duplication to agriculture and human nutrition. Future studies should assess whether different TaZIP4-B2 alleles exhibit variable effects on meiotic stabilisation and/or resistance to temperature change.

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 290
Author(s):  
Abdul Kader Alabdullah ◽  
Graham Moore ◽  
Azahara C. Martín

Although most flowering plants are polyploid, little is known of how the meiotic process evolves after polyploidisation to stabilise and preserve fertility. On wheat polyploidisation, the major meiotic gene ZIP4 on chromosome 3B duplicated onto 5B and diverged (TaZIP4-B2). TaZIP4-B2 was recently shown to promote homologous pairing, synapsis and crossover, and suppress homoeologous crossover. We therefore suspected that these meiotic stabilising effects could be important for preserving wheat fertility. A CRISPR Tazip4-B2 mutant was exploited to assess the contribution of the 5B duplicated ZIP4 copy in maintaining pollen viability and grain setting. Analysis demonstrated abnormalities in 56% of meiocytes in the Tazip4-B2 mutant, with micronuclei in 50% of tetrads, reduced size in 48% of pollen grains and a near 50% reduction in grain number. Further studies showed that most of the reduced grain number occurred when Tazip4-B2 mutant plants were pollinated with the less viable Tazip4-B2 mutant pollen rather than with wild type pollen, suggesting that the stabilising effect of TaZIP4-B2 on meiosis has a greater consequence in subsequent male, rather than female gametogenesis. These studies reveal the extraordinary value of the wheat chromosome 5B TaZIP4-B2 duplication to agriculture and human nutrition. Future studies should further investigate the role of TaZIP4-B2 on female fertility and assess whether different TaZIP4-B2 alleles exhibit variable effects on meiotic stabilisation and/or resistance to temperature change.


2016 ◽  
Vol 67 (2) ◽  
pp. 137 ◽  
Author(s):  
Minuka M. Weerasinghe ◽  
Peter S. Kettlewell ◽  
Ivan G. Grove ◽  
Martin C. Hare

Application of film antitranspirant to wheat during late stem extension reduces drought damage to yield, but the mechanism is unknown. Field experiments under rain shelters were conducted over 3 years to test the hypothesis that film antitranspirant applied before meiosis alleviates drought-induced losses of pollen viability, grain number and yield. The film antitranspirant di-1-p-menthene was applied at third-node stage, and meiosis occurred at the early boot stage, with a range of 11–16 days after spray application in different years. Irrigated, unsprayed plots were included under the rain-shelters, and pollen viability, measured in 2 years in these plots, averaged 95.3%. Drought reduced pollen viability to 80.1% in unirrigated, unsprayed plots, but only to 88.6% in unirrigated plots treated with film antitranspirant. Grain number and yield of irrigated plots, measured in all years, were 16 529 m–2 and 9.55 t ha–1, respectively, on average. These were reduced by drought to 11 410 m–2 and 6.31 t ha–1 in unirrigated, unsprayed plots, but only to 12 878 m–2 and 6.97 t ha–1 in unirrigated plots treated with film antitranspirant. Thus compared with unirrigated, unsprayed plots, antitranspirant gave a grain yield benefit of 0.66 t ha–1. Further work is needed to validate the pollen viability mechanism in different climatic zones and with a wide range of cultivars.


2020 ◽  
Author(s):  
Breygina Maria ◽  
Klimenko Ekaterina ◽  
Shilov Eugeny ◽  
Mamaeva Anna ◽  
Zgoda Viktor ◽  
...  

1.AbstractROS are known to be accumulated in stigmas of different species and can possibly perform different functions in plant reproduction. Here we confirm the assumption that they affect pollen by altering ion transport through the plasma membrane; as a more deferred effect, pollen proteome is modified. We detected ROS in stigma exudate, found hyperpolarization in exudate-treated growing pollen tubes and used flow cytometry of pollen protoplasts to compare the effects of fresh exudate and exogenous H2O2 on pollen tube plasmalemma. Exudate causes plasmalemma hyperpolarization similar to the one provoked by H2O2, which is abolished by catalase treatment and ROS quencher MnTMPP. Inhibitory analysis indicates the participation of Ca2+- and K+-conducting channels in the observed hyperpolarization, linking obtained data with previous patch-clamp studies in vitro. For a deeper understanding of pollen response to ROS we analyzed proteome alterations in H2O2-treated pollen grains. We found 50 unique proteins and 20 differently accumulated proteins that are mainly involved in cell metabolism, energetics, protein synthesis and folding. Thus, pollen is getting ready for effective resource usage, construction of cellular components and rapid growth.HighlightsThe active substance in stigma exudate is H2O2H2O2 causes hyperpolarization mediated by the activation of cation channels.H2O2 affects pollen proteome; we found 50 unique proteins.


2021 ◽  
Vol 7 (3) ◽  
pp. 64-69
Author(s):  
L. Bayramov

Abstract. The zones of distribution of varieties and forms of quince on the territory of the Nakhchivan Autonomous Republic have been established, phenological observations have been carried out, their flowering and fruiting have been studied. On the territory of the Autonomous Republic, flowering of varieties and forms of quince begins in the second decade of April, depending on the distribution zone, with an average daily temperature of 12–13 °C and lasts 12–13 days, depending on weather conditions. Each flower has 10–12 stamens arranged in one row. The article also studied the viability of pollen in a number of quince varieties. Pollen viability was studied in the varieties Sary, Tursh, Ordubad, Gara and wild forms. Pollen fertility was determined by staining with acetocarmine. Pollen germinates in 2–5–10–15 and 20% glucose solution. Counting of germinated pollen grains was carried out under a microscope. The study showed that of all the experimental varieties, the pollen fertility of the Sary quince and Tursh quince varieties is high (up to 96.6–97.1%). The best medium for the germination of quince pollen is a 10–15% glucose solution. Pollen germination in this solution reaches 47.4–88.0%. In distilled water (control), the germination of quince pollen reached from 9.7% to 35.6% for varieties. Quince pollen remains viable for 31–43 days.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 508
Author(s):  
Jie Qiu ◽  
Chao Gao ◽  
Hongli Wei ◽  
Biao Wang ◽  
Yang Hu ◽  
...  

To study the flowering biology of Rhododendron pulchrum, we used scanning electron microscopy (SEM) and paraffin sectioning to observe the microstructures of its floral organs, a methyl thiazolyl tetrazolium (MTT) colorimetric assay to detect pollen viability in different periods, continuous observations to study flowering phenology, and artificial pollination and a benzidine-hydrogen peroxide method to determine stigma receptivity. R. pulchrum exhibited a centralized flowering phenology. The protogynous stigmas of R. pulchrum were able to receive pollen before flowering. The pollen grains of R. pulchrum fused into tetrads, the average ratio of the polar axis length to the equatorial axis length (P/E) was 1.05, and the pollen viability was highest in the initial flowering period, reaching 88.98%. The pollen/ovule (P/O) ratio was 266–328, and the outcrossing index (OCI) was 4; the vitality of R. pulchrum pollen remained high in the initial flowering and blooming periods. Compared with the lifespan of a single flower, pollen vitality remained high for most of the experimental period, thereby improving male fitness. The P/O ratio suggests that R. pulchrum may have a facultative outcrossing breeding system. The OCI estimation suggests that R. pulchrum is partially self-compatible, most likely requiring pollinators to complete pollination.


2020 ◽  
Author(s):  
Sandra Martin Lorenzo ◽  
Valérie Nalesso ◽  
Claire Chevalier ◽  
Marie-Christine Birling ◽  
Yann Herault

ABSTRACTGene copy number variants (CNV) have an important role in the appearance of neurodevelopmental disorders. Particularly, the deletion of the 16p11.2 locus is associated with autism spectrum disorder, intellectual disability, and several other features. Earlier studies highlighted the implication of Kctd13 genetic imbalance in the 16p11.2 deletion through the regulation of the RHOA pathway. Here, we target the pathway and rescue the cognitive phenotypes of the 16p11.2 deletion mouse models. We used a chronic administration of fasudil (HA1077), an inhibitor of the Rho-associated protein kinase (ROCK), in mouse models carrying a heterozygous inactivation of Kctd13, or the deletion of the entire 16p11.2 BP4-BP5 region. We focused our attention on the most robust cognitive phenotypes seen in the 16p11.2 models and we showed that a chronic fasudil treatment can restore object recognition memory in both mouse models but does not change other behavioural traits. These findings confirm KCTD13 as one target gene causing cognitive deficits in 16p11.2 deletion patients, and the pertinence of the RHOA pathway as a therapeutic path and reinforce the contribution of other gene(s) involved in cognitive defects found in the 16p11.2 CNV models.HIGHLIGHTS- Kctd13 haploinsufficiency recapitulates most of the behaviour phenotypes found in the 16p11.2 Del/+ models- Fasudil treatment restores Kctd13 and 16p11.2 Del/+ mutant phenotypes in novel location and novel object recognition memory tests- Fasudil treatment restores the RhoA pathway in Kctd13+/- and 16p11.2 Del/+ models


2011 ◽  
Vol 11 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Carlos Eduardo da Silva Monteiro ◽  
Telma Nair Santana Pereira ◽  
Karina Pereira de Campos

The objective of this study was the reproductive characterization of Capsicum accessions as well as of interspecific hybrids, based on pollen viability. Hybrids were obtained between Capsicum species. Pollen viability was high in most accessions, indicating that meiosis is normal, resulting in viable pollen grains. The pollen viability of species C. pubescens was the lowest (27 %). The interspecific hybrids had varying degrees of pollen viability, from fertile combinations (C. chinense x C. frutescens and C. annuum x C. baccatum) to male sterile combinations. Pollen viability also varied within the hybrid combination according to accessions used in the cross. Results indicate that male sterility is one of the incompatibility barriers among Capsicum species since hybrids can be established, but may be male sterile.


2012 ◽  
Vol 39 (12) ◽  
pp. 1009 ◽  
Author(s):  
Viola Devasirvatham ◽  
Pooran M. Gaur ◽  
Nalini Mallikarjuna ◽  
Raju N. Tokachichu ◽  
Richard M. Trethowan ◽  
...  

High temperature during the reproductive stage in chickpea (Cicer arietinum L.) is a major cause of yield loss. The objective of this research was to determine whether that variation can be explained by differences in anther and pollen development under heat stress: the effect of high temperature during the pre- and post-anthesis periods on pollen viability, pollen germination in a medium, pollen germination on the stigma, pollen tube growth and pod set in a heat-tolerant (ICCV 92944) and a heat-sensitive (ICC 5912) genotype was studied. The plants were evaluated under heat stress and non-heat stress conditions in controlled environments. High temperature stress (29/16°C to 40/25°C) was gradually applied at flowering to study pollen viability and stigma receptivity including flower production, pod set and seed number. This was compared with a non-stress treatment (27/16°C). The high temperatures reduced pod set by reducing pollen viability and pollen production per flower. The ICCV 92944 pollen was viable at 35/20°C (41% fertile) and at 40/25°C (13% fertile), whereas ICC 5912 pollen was completely sterile at 35/20°C with no in vitro germination and no germination on the stigma. However, the stigma of ICC 5912 remained receptive at 35/20°C and non-stressed pollen (27/16°C) germinated on it during reciprocal crossing. These data indicate that pollen grains were more sensitive to high temperature than the stigma in chickpea. High temperature also reduced pollen production per flower, % pollen germination, pod set and seed number.


2019 ◽  
Vol 78 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Linda Djafri-Bouallag ◽  
Malika Ourari ◽  
Mohamed Sahnoune

Abstract This paper reports a cytogenetic study of eight Medicago L. species sampled from the Soummam Valley (northeastern Algeria). Chromosome numbers and meiosis irregularities during microsporogenesis were explored. Pollen viability rate and pollen size were also examined. The studied taxa are diploid and display biva-lent pairing and regular chromosome segregation during meiosis. Although meiosis appears regular, some anomalies were detected in relatively high cumulated rates (14.66%–26.14%). The most common meiotic abnormality examined here is related to cytomixis (from 14.66% in M. littoralis to 25.83% in M. laciniata). Other anomalies were also detected, including chromatic bridges, asynchronous divisions, micronuclei and multipolar cells. Consequently, the species exhibited varying percentages of pollen viability (from 70.11% in M. laciniata to 99.14% in M. littoralis). Pollen viability was negatively correlated with meiotic abnormalities (Pearson correlation coefficient R = −0.72, p = 0.043). The pollen grains were also heterogeneous in size. Medicago truncatula Gaertn. and M. laciniata (L.) Miller presented the most variable pollen size (relative standard deviation exceeding 19%). Medicago littoralis is distinguished from other species by possessing homogeneous and large sized pollen (relative standard deviation RSD = 6.73 %). The cytogenetic and pollen data provided by this study are discussed in the context of species systematics and in the perspective of genetic improvement.


Botany ◽  
2008 ◽  
Vol 86 (1) ◽  
pp. 98-102 ◽  
Author(s):  
Denis Barabé ◽  
Karine Lavallée ◽  
Marc Gibernau

Pollen viability and germination were observed in six species of neotropical Araceae. In Anaphyllopsis americana (Engl.) A. Hay, 50% of pollen grains remain viable after 70 h following dehiscence, and it takes over 210 h for total loss of viability to occur. In Montrichardia arborescens (L.) Schott, approximately 50% of pollen grains are not viable after 24 h, and no germination occurs after 36 h. Monstera adansonii Schott and Philodendron pedatum (Hook.) Kunth have the lowest initial pollen viability (40%–55%) and lose half of this viability after approximately 30 h. Pollen grains of Monstera adansonii remain viable for at least 60 h and that of P. pedatum for approximately 40 h, and constitute another group with a similar viability pattern. In Philodendron melinonii Brongn. ex Regel and Philodendron solimoesense A.C. Sm., pollen loses 50% of its viability after 24 h, but remains viable for at least 48 h. The percentage of viability decreases in a pattern from species having a long flowering cycle and small pollen grains (A. americana) to species with a short flowering cycle and large pollen grains (M. arborescens).


Sign in / Sign up

Export Citation Format

Share Document