nested genes
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1381
Author(s):  
Raquel Assis

Nested protein-coding genes accumulated throughout metazoan evolution, with early analyses of human and Drosophila microarray data indicating that this phenomenon was simply due to the presence of large introns. However, a recent study employing RNA-seq data uncovered evidence of transcriptional interference driving rapid expression divergence between Drosophila nested genes, illustrating that accurate expression estimation of overlapping genes can enhance detection of their relationships. Hence, here I apply an analogous approach to strand-specific RNA-seq data from human and mouse to revisit the role of transcriptional interference in the evolution of mammalian nested genes. A genomic survey reveals that whereas mammalian nested genes indeed accrued over evolutionary time, they are retained at lower frequencies than in Drosophila. Though several properties of mammalian nested genes align with observations in Drosophila and with expectations under transcriptional interference, contrary to both, their expression divergence is not statistically different from that between unnested genes, and also does not increase after nesting. Together, these results support the hypothesis that lower selection efficiencies limit rates of gene expression evolution in mammals, leading to their reliance on immediate eradication of deleterious nested genes to avoid transcriptional interference.


Author(s):  
Darrin T Schultz ◽  
Warren R Francis ◽  
Jakob D McBroome ◽  
Lynne M Christianson ◽  
Steven H D Haddock ◽  
...  

Abstract Here, we present a karyotype, a chromosome-scale genome assembly, and a genome annotation from the ctenophore Hormiphora californensis (Ctenophora: Cydippida: Pleurobrachiidae). The assembly spans 110 Mb in 44 scaffolds and 99.47% of the bases are contained in 13 scaffolds. Chromosome micrographs and Hi-C heatmaps support a karyotype of 13 diploid chromosomes. Hi-C data reveal three large heterozygous inversions on chromosome 1, and one heterozygous inversion shares the same gene order found in the genome of the ctenophore Pleurobrachia bachei. We find evidence that H. californensis and P. bachei share thirteen homologous chromosomes, and the same karyotype of 1n = 13. The manually curated PacBio Iso-Seq-based genome annotation reveals complex gene structures, including nested genes and trans-spliced leader sequences. This chromosome-scale assembly is a useful resource for ctenophore biology and will aid future studies of metazoan evolution and phylogenetics.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 579
Author(s):  
Gábor Torma ◽  
Dóra Tombácz ◽  
Zsolt Csabai ◽  
Norbert Moldován ◽  
István Mészáros ◽  
...  

African swine fever virus (ASFV) is a large DNA virus belonging to the Asfarviridae family. Despite its agricultural importance, little is known about the fundamental molecular mechanisms of this pathogen. Short-read sequencing (SRS) can produce a huge amount of high-precision sequencing reads for transcriptomic profiling, but it is inefficient for comprehensively annotating transcriptomes. Long-read sequencing (LRS) can overcome some of SRS’s limitations, but it also has drawbacks, such as low-coverage and high error rate. The limitations of the two approaches can be surmounted by the combined use of these techniques. In this study, we used Illumina SRS and Oxford Nanopore Technologies LRS platforms with multiple library preparation methods (amplified and direct cDNA sequencings and native RNA sequencing) for constructing the ASFV transcriptomic atlas. This work identified many novel transcripts and transcript isoforms and annotated the precise termini of previously described RNAs. This study identified a novel species of ASFV transcripts, the replication origin-associated RNAs. Additionally, we discovered several nested genes embedded into larger canonical genes. In contrast to the current view that the ASFV transcripts are monocistronic, we detected a significant extent of polycistronism. A multifaceted meshwork of transcriptional overlaps was also discovered.


2019 ◽  
Vol 35 (23) ◽  
pp. 5039-5047 ◽  
Author(s):  
Gabrielle Deschamps-Francoeur ◽  
Vincent Boivin ◽  
Sherif Abou Elela ◽  
Michelle S Scott

Abstract Motivation Next-generation sequencing techniques revolutionized the study of RNA expression by permitting whole transcriptome analysis. However, sequencing reads generated from nested and multi-copy genes are often either misassigned or discarded, which greatly reduces both quantification accuracy and gene coverage. Results Here we present count corrector (CoCo), a read assignment pipeline that takes into account the multitude of overlapping and repetitive genes in the transcriptome of higher eukaryotes. CoCo uses a modified annotation file that highlights nested genes and proportionally distributes multimapped reads between repeated sequences. CoCo salvages over 15% of discarded aligned RNA-seq reads and significantly changes the abundance estimates for both coding and non-coding RNA as validated by PCR and bedgraph comparisons. Availability and implementation The CoCo software is an open source package written in Python and available from http://gitlabscottgroup.med.usherbrooke.ca/scott-group/coco. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Author(s):  
Gabrielle Deschamps-Francoeur ◽  
Vincent Boivin ◽  
Sherif Abou Elela ◽  
Michelle S Scott

AbstractMotivationNext generation sequencing techniques revolutionized the study of RNA expression by permitting whole transcriptome analysis. However, sequencing reads generated from nested and multi-copy genes are often either misassigned or discarded, which greatly reduces both quantification accuracy and gene coverage.ResultsHere we present CoCo, a read assignment pipeline that takes into account the multitude of overlapping and repetitive genes in the transcriptome of higher eukaryotes. CoCo uses a modified annotation file that highlights nested genes and proportionally distributes multimapped reads between repeated sequences. CoCo salvages over 15% of discarded aligned RNA-seq reads and significantly changes the abundance estimates for both coding and non-coding RNA as validated by PCR and bed-graph comparisons.AvailabilityThe CoCo software is an open source package written in Python and available from http://gitlabscottgroup.med.usherbrooke.ca/scott-group/[email protected]


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26099 ◽  
Author(s):  
Kristel Kaer ◽  
Jelena Branovets ◽  
Anni Hallikma ◽  
Pilvi Nigumann ◽  
Mart Speek

2011 ◽  
Vol 7 ◽  
pp. S136-S137
Author(s):  
Christin Gano ◽  
Kurt Jellinger ◽  
Bernd Janetzky ◽  
Elisabeth Kienzl ◽  
Frank Rattay ◽  
...  

2009 ◽  
Vol 8 (9) ◽  
pp. 1321-1329 ◽  
Author(s):  
Anuj Kumar

2009 ◽  
Vol 8 (6) ◽  
pp. 899-912 ◽  
Author(s):  
Erica Zweifel ◽  
Joshua Smith ◽  
Daniel Romero ◽  
Thomas H. Giddings ◽  
Mark Winey ◽  
...  

ABSTRACT We describe a novel pair of nested genes, CDA12 and CDA13, from Tetrahymena thermophila. Both are implicated in membrane trafficking associated with cell division and conjugation. Green fluorescent protein localization reveals Cda12p decoration of diverse membrane-bound compartments, including mobile, subcortical tubulovesicular compartments; perinuclear vesicles; and candidates for recycling endosomes. Cda13p decorates intracellular foci located adjacent to cortically aligned mitochondria and their neighboring Golgi networks. The expression of antisense CDA12 RNA in transformants produces defects in cytokinesis, macronuclear segregation, and the processing of pinosomes to downstream compartments. Antisense CDA13 RNA expression produces a conjugation phenotype, resulting in the failure of mating pairs to separate, as well as failures in postconjugation cytokinesis and macronuclear fission. This study offers insight into the membrane trafficking events linking endosome and Golgi network activities, cytokinesis, and karyokinesis and the unique membrane-remodeling events that accompany conjugation in the ciliate T. thermophila. We also highlight an unusual aspect of genome organization in Tetrahymena, namely, the existence of nested, antisense genes.


2008 ◽  
Vol 24 (10) ◽  
pp. 475-478 ◽  
Author(s):  
Raquel Assis ◽  
Alexey S. Kondrashov ◽  
Eugene V. Koonin ◽  
Fyodor A. Kondrashov

Sign in / Sign up

Export Citation Format

Share Document