scholarly journals Plasticity of seasonal xylem and phloem production of Norway spruce along an elevational gradient

Trees ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1281-1297
Author(s):  
Tobias Walter Miller ◽  
Dominik Florian Stangler ◽  
Elena Larysch ◽  
Thomas Seifert ◽  
Heinrich Spiecker ◽  
...  

Abstract Key message Phloem cell production was less influenced by environmental factors than xylem cell production. The moment of maximum number of conducting phloem cells occurred at the end of the growing season. Abstract The understanding of the seasonality of phloem production, its dependence on climatic factors and potential trade-offs with xylem cell production is still limited. This study determined key tree-ring phenological events and examined the dynamics of phloem and xylem cell production of Norway Spruce (Picea abies (L.) Karst) by sampling microcores during the growing seasons 2014 and 2015 along an elevational gradient (450 m, 750 m, 1250 m a.s.l.) in south-western Germany. The onset of phloem formation preceded xylem formation at each elevation by approximately 2 weeks, while cessation showed no clear differences between the stands. Maximum rates of xylem and phloem cell production were observed around the summer solstice, independent of elevation. No linear pattern was found in the occurrence of phenological events along the elevational gradient. Phloem formation appeared to be less sensitive to environmental conditions since no difference was found in the number of produced sieve cells between the 2 years of study, whereas the ratio of xylem to phloem cells was significantly smaller in the year 2015 with summer drought. The total number of conducting, non-collapsed phloem cells did not culminate as expected at the time of the potential maximum assimilate production, but at the end of the growing season. Thus, interpretation of phloem formation should not be limited to the function of assimilate transport but should follow a more holistic view of structural–functional relationships of conductive tissues and tree physiological processes.

2007 ◽  
Vol 85 (5) ◽  
pp. 518-525 ◽  
Author(s):  
Derrick Ko Heinrichs ◽  
Jacques C. Tardif ◽  
Yves Bergeron

Xylem production was studied by repeatedly taking microcore samples from the stems of six tree species growing on the “réserve écologique des Vieux-Arbres”, on Lake Duparquet, Québec, throughout the 1999 growing season. Species examined were paper birch ( Betula papyrifera Marsh.), white spruce ( Picea glauca (Moench) Voss), black spruce ( Picea mariana (Mill.) BSP), jack pine ( Pinus banksiana Lamb.), red pine ( Pinus resinosa Ait.), and eastern white cedar ( Thuja occidentalis L.). Onset of xylem cell production was observed in all species by 22 May 1999, and ended as early as mid-July and early August for white spruce and eastern white cedar, respectively. Xylem cell production in the remaining species ended between late August and mid-September. In general, the onset of latewood production ranged from the start of July to the first week of August. Typical sigmoidal curves were characteristic of ring width, number of cells, and number of earlywood cells over the growing season. Completion of the annual growth increment was quickest for white spruce and eastern white cedar, while it continued longest in both pine species. Numerous similarities in xylem production and tree ring formation over the course of the growing season were observed among the six species, suggesting that weather, along with photoperiod, plays a critical role in xylem production.


2005 ◽  
Vol 35 (11) ◽  
pp. 2743-2755 ◽  
Author(s):  
Michael J Case ◽  
David L Peterson

Information about the sensitivity to climate of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is valuable because it will allow forest managers to maximize growth, better understand how carbon sequestration may change over time, and better model and predict future ecosystem responses to climatic change. We examined the effects of climatic variability on the growth of Douglas-fir along an elevational gradient in the North Cascade Range, Washington (USA), at annual timescales during the 20th century. Multivariate analysis and correlation analysis were used to identify climate-growth relationships. Mid-elevation chronologies were negatively correlated with growing season maximum temperature and positively correlated with growing season precipitation. In contrast, high-elevation chronologies were positively correlated with annual temperatures and negatively correlated with previous-year winter Pacific Decadal Oscillation index. Projected increases in summer temperatures will likely cause greater soil moisture stress in many forested ecosystems. The potential of extended summer drought periods over decades may significantly alter spatial patterns of productivity, thus impacting carbon storage. It is likely that the productivity of Douglas-fir in the Cascade Range will decrease at sites with shallow, excessively drained soils, south- and west-facing aspects, and steep slopes and will increase at high-elevation sites.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 943
Author(s):  
Katri Nissinen ◽  
Virpi Virjamo ◽  
Antti Kilpeläinen ◽  
Veli-Pekka Ikonen ◽  
Laura Pikkarainen ◽  
...  

We studied the growth responses of boreal Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and silver birch (Betula pendula Roth) seedlings to simulated climate warming of an average of 1.3 °C over the growing season in a controlled field experiment in central Finland. We had six replicate plots for elevated and ambient temperature for each tree species. The warming treatment lasted for the conifers for three growing seasons and for the birch two growing seasons. We measured the height and diameter growth of all the seedlings weekly during the growing season. The shoot and root biomass and their ratios were measured annually in one-third of seedlings harvested from each plot in autumn. After two growing seasons, the height, diameter and shoot biomass were 45%, 19% and 41% larger in silver birch seedlings under the warming treatment, but the root biomass was clearly less affected. After three growing seasons, the height, diameter, shoot and root biomass were under a warming treatment 39, 47, 189 and 113% greater in Scots pine, but the root:shoot ratio 29% lower, respectively. The corresponding responses of Norway spruce to warming were clearly smaller (e.g., shoot biomass 46% higher under a warming treatment). As a comparison, the relative response of height growth in silver birch was after two growing seasons equal to that measured in Scots pine after three growing seasons. Based on our findings, especially silver birch seedlings, but also Scots pine seedlings benefitted from warming, which should be taken into account in forest regeneration in the future.


2020 ◽  
Author(s):  
Karen Hei-Laan Yeung ◽  
Carole Helfter ◽  
Neil Mullinger ◽  
Mhairi Coyle ◽  
Eiko Nemitz

<p>Peatlands North of 45˚ represent one of the largest terrestrial carbon (C) stores. They play an important role in the global C-cycle, and their ability to sequester carbon is controlled by multiple, often competing, factors including precipitation, temperature and phenology. Land-atmosphere exchange of carbon dioxide (CO<sub>2</sub>) is dynamic, and exhibits marked seasonal and inter-annual variations which can effect the overall carbon sink strength in both the short- and long-term.</p><p>Due to increased incidences of climate anomalies in recent years, long-term datasets are essential to disambiguate natural variability in Net Ecosystem Exchange (NEE) from shorter-term fluctuations. This is particularly important at high latitudes (>45˚N) where the majority of global peatlands are found. With increasing pressure from stressors such as climate and land-use change, it has been predicted that with a ca. 3<sup>o</sup>C global temperature rise by 2100, UK peatlands could become a net source of C.</p><p>NEE of CO<sub>2</sub> has been measured using the eddy-covariance (EC) method at Auchencorth Moss (55°47’32 N, 3°14’35 W, 267 m a.s.l.), a temperate, lowland, ombrotrophic peatland in central Scotland, continuously since 2002. Alongside EC data, we present a range of meteorological parameters measured at site including soil temperature, total solar and photosynthetically active radiation (PAR), rainfall, and, since April 2007, half-hourly water table depth readings. The length of record and range of measurements make this dataset an important resource as one of the longest term records of CO<sub>2</sub> fluxes from a temperate peatland.</p><p>Although seasonal cycles of gross primary productivity (GPP) were highly variable between years, the site was a consistent CO<sub>2</sub> sink for the period 2002-2012. However, net annual losses of CO<sub>2</sub> have been recorded on several occasions since 2013. Whilst NEE tends to be positively correlated with the length of growing season, anomalies in winter weather also explain some of the variability in CO<sub>2</sub> sink strength the following summer.</p><p>Additionally, water table depth (WTD) plays a crucial role, affecting both GPP and ecosystem respiration (R<sub>eco</sub>). Relatively dry summers in recent years have contributed to shifting the balance between R<sub>eco</sub> and GPP: prolonged periods of low WTD were typically accompanied by an increase in R<sub>eco</sub>, and a decrease in GPP, hence weakening the overall CO<sub>2</sub> sink strength. Extreme events such as drought periods and cold winter temperatures can have significant and complex effects on NEE, particularly when such meteorological anomalies co-occur. For example, a positive annual NEE occurred in 2003 when Europe experienced heatwave and summer drought. More recently, an unusually long spell of snow lasting until the end of March delayed the onset of the 2018 growing season by up to 1.5 months compared to previous years. This was followed by a prolonged dry spell in summer 2018, which weakened GPP, increased R<sub>eco</sub> and led to a net annual loss of 47.4 ton CO<sub>2</sub>-C km<sup>-2</sup>. It is clear that the role of Northern peatlands within the carbon cycle is being modified, driven by changes in climate at both local and global scales.</p>


2015 ◽  
Vol 166 (6) ◽  
pp. 399-407 ◽  
Author(s):  
Barbara Moser ◽  
Marek Metslaid ◽  
Lorenz Walthert ◽  
Ulrich Wasem ◽  
Thomas Wohlgemuth

Regeneration potential of different Scots pine and Norway spruce provenances under variable drought Rising temperatures will lead to extended periods of summer drought, which may challenge the persistence of Scots pine and Norway spruce in dry alpine valleys where these species play an important role in the protection against natural hazards. We tested whether the natural regeneration of the two species in the Rhine valley near Chur, Switzerland, might be limited under future climatic conditions and we compared the performance of autochthonous provenances with that of seedlings originating from regions with already drier summer climate such as the Rhone valley, continental Eastern Europe or the Mediterranean basin. Seeds of Scots pine and Norway spruce were sown repeatedly in forest clearings at three south-exposed sites in the Rhine valley near Chur, Switzerland. Soil moisture was manipulated to a minor extent with throughfall reduction roofs. In both species, regeneration success was primarily driven by the weather conditions during the three months following seed sowing: the seedlings having emerged in the rainy spring of 2013 had a higher survival rate and accumulated up to five times more aboveground biomass than the seedlings emerging in the dry spring of 2011. In years with an average or even positive water balance, Scots pine seedlings were able to establish at all sites. In Norway spruce, by contrast, establishment rate exceeded 10% of viable seeds only at the site with the highest water retention capacity. In years with a positive water balance during spring, the seedlings from the Rhine and Rhone valleys outperformed those from most Mediterranean and Eastern European provenances, while no differences between provenances were found in the dry spring of 2011. We suggest that periodical regeneration of Scots pine will be likely in the Rhine valley even under future climatic conditions, whereas the establishment of Norway spruce may remain an exceptional event in dry, south-exposed clearings.


1955 ◽  
Vol 6 (2) ◽  
pp. 245 ◽  
Author(s):  
Y Aitken

In Trifolium subterraneum L. (subterranean clover) the low temperature requirements of its range of varieties, together with the mild winter of southern Australia, result in a lengthened growing season compared with that usual in northern Europe, and hence in greater productivity. Over much of southern Australia, some degree of summer drought prevents the use or reduces the yield of perennial species and so the productive capacity of this particular clover has made it of major importance in pastures. The low temperature requirement, however, reduces the value of the species as a self-regenerating annual where temperatures of both summer and winter seasons are too high for flower initiation. This occurs with the later varieties when sown in northern Australia. Temperatures of the summer growing season in the tropics are likely to be too high even for the short low temperature requirement of the earliest flowering group, with its high critical upper margin of about 75°F mean weekly temperature. The dry winter months are cooler, and, if water supply is available, flower initiation is possible, though retarded with consequent leafiness of the plant. Hence in northern Australia, only varieties in the early flowering group may be of use in pastures, and then only in the cooler parts of the region.


2020 ◽  
Vol 66 (No. 7) ◽  
pp. 280-278 ◽  
Author(s):  
Thomas Agyei ◽  
Stanislav Juráň ◽  
Kojo Kwakye Ofori-Amanfo ◽  
Ladislav Šigut ◽  
Otmar Urban ◽  
...  

In order to understand the impact of summer drought on dry deposition of tropospheric ozone (O<sub>3</sub>), we compared severe and mild drought periods of summer 2018 in a mountain Norway spruce forest at Bílý Kříž, Beskydy Mts. An eddy covariance technique was applied to measure diurnal courses of the ecosystem O<sub>3</sub> and CO<sub>2</sub> fluxes. Low O<sub>3</sub> deposition was recorded in the morning and evening, while the highest CO<sub>2</sub> and O<sub><sup>3</sup></sub> fluxes were recorded during the central hours of the day. Total O<sub>3</sub> deposition during severe drought (soil humidity 13%) was significantly higher than the deposition during the mild drought period (soil humidity 19%). Our data indicate that high vapour pressure deficit and low soil humidity during severe drought led to the stomatal closure, while non-stomatal O<sub>3</sub> deposition, associated with chemical reactions of O<sub>3</sub> with NO and volatile organic compounds, are responsible for higher total O<sub>3</sub> deposition during the severe drought period. Therefore, we assume that under severe drought stomatal O<sub>3</sub> uptake decreases but non-stomatal depositions to forest ecosystems substantially increase.


1986 ◽  
Vol 16 (5) ◽  
pp. 903-909 ◽  
Author(s):  
H. A. Margolis ◽  
R. H. Waring

October-fertilized and unfertilized 2-0 Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) seedlings were outplanted the following February. Half of each planting block was seeded with grass to induce water stress during the typical summer drought. Sucrose was applied to soil around each seedling to limit availability of nitrogen to tree roots. Fertilized seedlings broke bud 9–10 days earlier, produced more shoot growth, and, as shown in later harvests, had higher relative growth rates than unfertilized seedlings. However, initial differences in growth response were due primarily to the earlier budbreak. Seedlings growing with grass had predawn water potentials of −1.5 MPa by early August; by September 3, unfertilized seedlings growing with grass were significantly more stressed than any others. Although free amino acid and total nitrogen concentrations were higher in fertilized than unfertilized seedlings when planted, they became equal by the end of one growing season. However, fertilized seedlings contained more free amino acids and nitrogen because of their greater size. Grass competition affected both seedling nitrogen and carbohydrate chemistry. After one growing season, fertilized seedlings had greater height increment, shoot growth, leaf area, relative growth rate, and production per unit nitrogen. Although autumn fertilization benefited these Douglas-fir seedlings, negative effects could result from carbohydrate depletion because of increased respiration or from frost damage because of earlier budbreak.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1602
Author(s):  
Xiaoxia Huang ◽  
Xiaoneng Sun ◽  
Yuan Jiang ◽  
Feng Xue ◽  
Minghao Cui ◽  
...  

Transitional climate zones (TCZ) are characterized by instability due to rapid changes in climate and biological variables, and trees growing there are particularly sensitive to climate change. Therefore, knowledge about the shifted relationships of tree growth in response to climate warming will shape regional forest conservation and management strategies. China has experienced rapid warming in recent decades. However, how tree growth in semihumid to semiarid regions, such as the Guandi Mountains, responds to more sophisticated changes in the hydrothermal combination is not yet clear. In this study, we used tree-ring width data from three sites along an elevational gradient in the Guandi Mountains to present the response of Picea wilsonii Mast. radial growth to increasing temperature and elevational differences in the relationship between tree growth and climate. The results indicated that the Guandi Mountains have experienced rapid warming with a clear trend toward aridity. From 1959 to 1995, the radial growth of P. wilsonii was mainly influenced by temperature, while it was controlled by both temperature and precipitation after rapid warming in 1996. From 1959 to 2017, this species showed a generally consistent growth–climate relationship at different elevations in the Guandi Mountains. However, the radial growth of trees at higher elevations had a higher climatic correlation than at lower elevations, and it was more conditioned by higher summer temperatures and precipitation in December of the previous year. These results suggested that P. wilsonii was more susceptible to drought and high temperatures due to a warming climate and that more attention should be devoted to forest management, especially the adverse consequences of summer drought on P. wilsonii.


2016 ◽  
Vol 9 (3) ◽  
pp. 375-382 ◽  
Author(s):  
K Giagli ◽  
J Gričar ◽  
H Vavrčík ◽  
V Gryc

Sign in / Sign up

Export Citation Format

Share Document