polarization charge
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
L. C. Liu ◽  
K. W. Chen ◽  
M. S. Lin ◽  
L. R. Barnett ◽  
Y. F. Tsai ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17391-17398
Author(s):  
Li Liu ◽  
Pingli Lv

The Cu atom provides the positive polarization charge center to enhance CO2 adsorption and up-shifts its d-band center to improve the activation of CO2.


Doklady BGUIR ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 62-68
Author(s):  
V. S. Volcheck ◽  
V. R. Stempitsky

A significant rise in the mass production of products that contain nanoparticles is of growing concern due to the detection of their toxic effects on living organisms. The standard method for analyzing the toxicity of substances, including nanomaterials, is toxicological testing, which requires the substantial consumption of time and material resources. An alternative approach is to develop models that predict the effect of nanomaterials on biological systems. In both cases, for the detection of nanoparticles an effective electronic complex consisting of a sensor with high sensitivity and a data reception/processing/transmission system is necessary. In recent times, fundamental and applied research activities aimed at the application of heterostructure field-effect transistors – high electron mobility transistors–as a base for such sensors have been undertaken. The purpose of this work is to develop a technique for modeling a sensor for toxic nanoparticles based on the heterostructure field-effect transistor. The object of the research is a gallium nitride high electron mobility transistor device structure. The subject of the research is the electrical characteristics of the transistor obtained in static mode. The calculation results show that the dependence between the concentration of the toxic nanoparticles in the test medium and the polarization charge surface density could serve as a base for modeling the sensor for toxic nanoparticles based on the heterostructure field-effect transistor. The primary advantage of the proposed technique is the use of the scaling parameter intended directly for calibrating the polarization charge density in accordance with the two-dimensional electron gas concentration. The obtained results can be utilized by the electronics industry of the Republic of Belarus for developing the hardware components of gallium nitride high-frequency electronics.


2020 ◽  
Author(s):  
Yao-Peng Zhao ◽  
Chong Wang ◽  
Xue-Feng Zheng ◽  
Xiao-Hua Ma ◽  
Ang Li ◽  
...  

2020 ◽  
Vol 117 (23) ◽  
pp. 232901
Author(s):  
Ming-Yuan Yan ◽  
Jian-Min Yan ◽  
Meng-Yuan Zhang ◽  
Ting-Wei Chen ◽  
Guan-Yin Gao ◽  
...  

2020 ◽  
pp. 2150008
Author(s):  
Ming Yang ◽  
Qizheng Ji ◽  
Xinguang Su ◽  
Weihong Zhang ◽  
Yuanyuan Wang ◽  
...  

For the fabricated AlGaN/GaN high electron mobility transistors (HEMTs) with different Ohmic contact widths, the gate-channel electron mobility is obtained experimentally. Mobility curves show very different values and trends. This phenomenon is investigated with the scattering theory in AlGaN/GaN HEMTs. The reason for the different mobility curves is found to be attributed to the different polarization charge distributions at the AlGaN/GaN interface. The AlGaN/GaN HEMT with a smaller Ohmic contact width corresponds to positive additional polarization charge near the Ohmic contact. The AlGaN/GaN HEMT with a larger Ohmic contact width corresponds to negative additional polarization charge near the Ohmic contact. Changing the Ohmic contact width will be a new dimension to optimize the characteristics of AlGaN/GaN HEMTs effectively.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1068
Author(s):  
Kwangeun Kim ◽  
Jaewon Jang

The effects of post-deposition annealing (PDA) on the formation of polarization-charge inversion at ultrathin Al2O3/Ga-polar GaN interfaces are assessed by the analysis of energy band bending and measurement of electrical conduction. The PDA-induced positive interface charges form downward energy band bending at the Al2O3/GaN interfaces with polarization-charge inversion, which is analyzed using X-ray photoelectron spectroscopy. Net charge and interface charge densities at the Al2O3/GaN interfaces are estimated after PDA at 500 °C, 700 °C, and 900 °C. The PDA temperatures affect the formation of charge densities. That is, the charge density increases up to 700 °C and then decreases at 900 °C. Electrical characteristics of GaN Schottky diodes with ultrathin Al2O3 layers exhibit the passivation ability of the Al2O3 surface layer and the effects of polarization-charge inversion through PDA. This result can be applied to improvement in GaN-based electronic devices where surface states and process temperature work important role in device performance.


2020 ◽  
Author(s):  
Xiaoping Cao ◽  
Nan Zhou ◽  
Shuang Zheng ◽  
Shengqian Gao ◽  
Yuntao Zhu ◽  
...  

Abstract Optical vortices carrying orbital angular momentum (OAM) have recently attracted increasing interest for providing an additional degree of freedom for capacity scaling in optical communications. The optical vortex generator is an essential component to facilitate OAM-enabled optical communications. Traditional devices face challenges of limited compactness, narrow bandwidth and first-order OAM modes. Here, using the direct-binary search (DBS) optimization algorithm, we design, fabricate and demonstrate a digitized subwavelength surface structure on silicon platform for wavelength-/polarization-/charge-diverse optical vortex generation. It features an ultra-compact footprint (~3.6×3.6 μm 2 ) and ultra-wide bandwidth (1480-1630 nm), supporting two polarizations and high-order OAM modes (OAM +1 , OAM -1 , OAM +2 , OAM -2 ) with high purity of ~90%. The mode crosstalk matrix is measured in the experiment with favorable performance. When generating x-pol. OAM +1 , x-pol. OAM -1 , y-pol. OAM +1 and y-pol. OAM -1 , the crosstalk of the worst case is less than -14 dB. When generating OAM +1 , OAM -1 , OAM +2 and OAM -2 , the crosstalk between any two OAM modes is less than -10 dB, and the lowest crosstalk is about -17 dB. The wavelength-/polarization-/charge-diverse optical vortex generator enables the full access of multiple physical dimensions (wavelength, polarization, space) of lightwaves. The demonstrations may open up new perspectives for chip-scale solutions to multi-dimensional multiplexing optical communications.


Sign in / Sign up

Export Citation Format

Share Document