scholarly journals Agrin/Lrp4 signal constrains MuSK activity during neuromuscular synapse development in appendicular muscle

2021 ◽  
Author(s):  
Lauren Jane Walker ◽  
Rebecca A Roque ◽  
Maria F Navarro ◽  
Michael Granato

The receptor tyrosine kinase MuSK, its co-receptor Lrp4 and the Agrin ligand constitute a signaling pathway critical in axial muscle for neuromuscular synapse development, yet whether this pathway functions similarly in appendicular muscle is unclear. Here, using the larval zebrafish pectoral fin, equivalent to tetrapod forelimbs, we show that like axial muscle, developing appendicular muscles develop aneural acetylcholine receptor (AChR) clusters prior to innervation. As motor axons arrive, neural AChR clusters form, eventually leading to functional synapses in a MuSK-dependent manner. Surprisingly, we find that loss of Agrin or Lrp4 function, which abolishes synaptic AChR clusters in axial muscle, results in enlarged presynaptic nerve endings and progressively expanding appendicular AChR clusters, mimicking the consequences of motoneuron ablation. Moreover, musk depletion in lrp4 mutants partially restores synaptic AChR patterning. Combined, our results provide compelling evidence that, in contrast to axial muscle in which Agrin/Lrp4 stimulates MuSK activity, Agrin/Lrp4 signaling in appendicular muscle constrains MuSK activity to organize neuromuscular synapses. Thus, we reveal a previously unappreciated role for Agrin/Lrp4 signaling, thereby highlighting distinct differences between axial and appendicular synapse development.

Development ◽  
2021 ◽  
Vol 148 (21) ◽  
Author(s):  
Lauren J. Walker ◽  
Rebecca A. Roque ◽  
Maria F. Navarro ◽  
Michael Granato

ABSTRACT The receptor tyrosine kinase MuSK, its co-receptor Lrp4 and the Agrin ligand constitute a signaling pathway that is crucial in axial muscle for neuromuscular synapse development, yet whether this pathway functions similarly in appendicular muscle is unclear. Here, using the larval zebrafish pectoral fin, equivalent to tetrapod forelimbs, we show that, similar to axial muscle, developing appendicular muscles form aneural acetylcholine receptor (AChR) clusters prior to innervation. As motor axons arrive, neural AChR clusters form, eventually leading to functional synapses in a MuSK-dependent manner. We find that loss of Agrin or Lrp4 function, which abolishes synaptic AChR clusters in axial muscle, results in enlarged presynaptic nerve regions and progressively expanding appendicular AChR clusters, mimicking the consequences of motoneuron ablation. Moreover, musk depletion in lrp4 mutants partially restores synaptic AChR patterning. Combined, our results provide compelling evidence that, in addition to the canonical pathway in which Agrin/Lrp4 stimulates MuSK activity, Agrin/Lrp4 signaling in appendicular muscle constrains MuSK-dependent neuromuscular synapse organization. Thus, we reveal a previously unappreciated role for Agrin/Lrp4 signaling, thereby highlighting distinct differences between axial and appendicular synapse development.


Peptides ◽  
2019 ◽  
Vol 120 ◽  
pp. 170017
Author(s):  
Terry W. Moody ◽  
Lingaku Lee ◽  
Tatiana Iordanskaia ◽  
Irene Ramos-Alvarez ◽  
Paola Moreno ◽  
...  

1994 ◽  
Vol 127 (3) ◽  
pp. 859-866 ◽  
Author(s):  
R L Klemke ◽  
M Yebra ◽  
E M Bayna ◽  
D A Cheresh

FG human pancreatic carcinoma cells adhere to vitronectin using integrin alpha v beta 5 yet are unable to migrate on this ligand whereas they readily migrate on collagen in an alpha 2 beta 1-dependent manner. We report here that epidermal growth factor receptor (EGFR) activation leads to de novo alpha v beta 5-dependent FG cell migration on vitronectin. The EGFR specific tyrosine kinase inhibitor tyrphostin 25 selectively prevents EGFR autophosphorylation thereby preventing the EGF-induced FG cell migration response on vitronectin without affecting constitutive migration on collagen. Protein kinase C (PKC) activation also leads to alpha v beta 5-directed motility on vitronectin; however, this is not blocked by tyrosine kinase inhibitors. In this case, PKC activation appears to be associated with and downstream of EGFR signaling since calphostin C, an inhibitor of PKC, blocks FG cell migration on vitronectin induced by either PKC or EGF. These findings represent the first report implicating a receptor tyrosine kinase in a specific integrin mediated cell motility event independent of adhesion.


1998 ◽  
Vol 18 (8) ◽  
pp. 4844-4854 ◽  
Author(s):  
Ngocdiep Le ◽  
Michael A. Simon

ABSTRACT DRK, the Drosophila homolog of the SH2-SH3 domain adaptor protein Grb2, is required during signaling by thesevenless receptor tyrosine kinase (SEV). One role of DRK is to provide a link between activated SEV and the Ras1 activator SOS. We have investigated the possibility that DRK performs other functions by identifying additional DRK-binding proteins. We show that the phosphotyrosine-binding (PTB) domain-containing protein Disabled (DAB) binds to the DRK SH3 domains. DAB is expressed in the ommatidial clusters, and loss of DAB function disrupts ommatidial development. Moreover, reduction of DAB function attenuates signaling by a constitutively activated SEV. Our biochemical analysis suggests that DAB binds SEV directly via its PTB domain, becomes tyrosine phosphorylated upon SEV activation, and then serves as an adaptor protein for SH2 domain-containing proteins. Taken together, these results indicate that DAB is a novel component of the SEV signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document