cerebellar granule neuron
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi31-vi32
Author(s):  
Abigail Cleveland ◽  
Katherine Veleta ◽  
Timothy Gershon

Abstract Medulloblastomas in most patients are distinctively sensitive to radiation therapy, but the mechanisms that mediate this sensitivity are unclear. Current treatments still fail 20%-60% of patients with SHH medulloblastoma and can leave survivors with long-term neurocognitive and social deficits. Understanding the mechanisms driving the typical radiation-sensitivity may identify less-toxic therapeutic strategies and provide insight into treatment failure. We previously showed that radiation sensitivity depends on the intrinsic apoptotic pathway, mediated by pro-apoptotic BAX. In cerebellar granule neuron progenitors (CGNPs), the cell of origin for SHH medulloblastoma, BAX activity is directly inhibited by anti-apoptotic BCL-xL; Bcl-xL-deleted CGNPs undergo spontaneous apoptosis. To test the therapeutic potential of disrupting BCL-xL in medulloblastoma, we conditionally deleted Bcl-xL in mice genetically engineered to develop SHH medulloblastoma. Here, I show that Bcl-xL deletion slows SHH medulloblastoma growth and prolongs survival of medulloblastoma-bearing mice. Bcl-xL-deleted tumors initially showed increased rates of spontaneous apoptosis, but this effect waned over time, suggesting the emergence of BCL-xL-independent survival mechanisms. We also noted increased microglial infiltration in Bcl-xL-deleted medulloblastomas. We hypothesize that IGF1 produced by microglia in the tumor microenvironment may be contributing to tumor resistance by upregulating translation of MCL-1, an anti-apoptotic BCL-xL homolog. IGF1 is known to upregulate translation through the mTOR pathway, while anti-apoptotic MCL-1 protein abundance is dependent upon translation regulation. Our on-going studies are testing the efficacy of pharmacologically targeting BCL-xL in mice with medulloblastoma, in combination with targeting IGF1 signaling using mTORC1 inhibitors.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Huan-Yun Chen ◽  
Chia-Lang Hsu ◽  
Han-Yi Lin ◽  
Yung-Feng Lin ◽  
Shih-Feng Tsai ◽  
...  

Abstract Background Heterozygous pathogenic variants in STUB1 are implicated in autosomal dominant spinocerebellar ataxia type 48 (SCA48), which is a rare familial ataxia disorder. We investigated the clinical, genetic and functional characteristics of STUB1 mutations identified from a Taiwanese ataxia cohort. Methods We performed whole genome sequencing in a genetically undiagnosed family with an autosomal dominant ataxia syndrome. Further Sanger sequencing of all exons and intron–exon boundary junctions of STUB1 in 249 unrelated patients with cerebellar ataxia was performed. The pathogenicity of the identified novel STUB1 variant was investigated. Results We identified a novel heterozygous frameshift variant, c.832del (p.Glu278fs), in STUB1 in two patients from the same family. This rare mutation is located in the U-box of the carboxyl terminus of the Hsc70-interacting protein (CHIP) protein, which is encoded by STUB1. Further in vitro experiments demonstrated that this novel heterozygous STUB1 frameshift variant impairs the CHIP protein’s activity and its interaction with the E2 ubiquitin ligase, UbE2D1, leading to neuronal accumulation of tau and α-synuclein, caspase-3 activation, and promoting cellular apoptosis through a dominant-negative pathogenic effect. The in vivo study revealed the influence of the CHIP expression level on the differentiation and migration of cerebellar granule neuron progenitors during cerebellar development. Conclusions Our findings provide clinical, genetic, and a mechanistic insight linking the novel heterozygous STUB1 frameshift mutation at the highly conserved U-box domain of CHIP as the cause of autosomal dominant SCA48. Our results further stress the importance of CHIP activity in neuronal protein homeostasis and cerebellar functions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Inna Armandari ◽  
Walderik W. Zomerman ◽  
Sabine L. A. Plasschaert ◽  
Marlinde J. Smit ◽  
Tosca. E. I. Martini ◽  
...  

AbstractWhile there has been significant progress in the molecular characterization of the childhood brain cancer medulloblastoma, the tumor proteome remains less explored. However, it is important to obtain a complete understanding of medulloblastoma protein biology, since interactions between proteins represent potential new drug targets. Using previously generated phosphoprotein signaling-profiles of a large cohort of primary medulloblastoma, we discovered that phosphorylation of transcription factor CREB strongly correlates with medulloblastoma survival and associates with a differentiation phenotype. We further found that during normal cerebellar development, phosphorylated CREB was selectively expressed in differentiating cerebellar granule neuron progenitor (CGNP) cells. In line, we observed increased differentiation in CGNPs treated with Forskolin, Bmp6 and Bmp12 (Gdf7), which induce CREB phosphorylation. Lastly, we demonstrated that inducing CREB activation via PKA-mediated CREB signaling, but not Bmp/MEK/ERK mediated signalling, enhances medulloblastoma cell sensitivity to chemotherapy.


2021 ◽  
Vol 14 ◽  
Author(s):  
Laura R. Goodwin ◽  
Gerardo Zapata ◽  
Sara Timpano ◽  
Jacob Marenger ◽  
David J. Picketts

Chromatin remodeling proteins utilize the energy from ATP hydrolysis to mobilize nucleosomes often creating accessibility for transcription factors within gene regulatory elements. Aberrant chromatin remodeling has diverse effects on neuroprogenitor homeostasis altering progenitor competence, proliferation, survival, or cell fate. Previous work has shown that inactivation of the ISWI genes, Smarca5 (encoding Snf2h) and Smarca1 (encoding Snf2l) have dramatic effects on brain development. Smarca5 conditional knockout mice have reduced progenitor expansion and severe forebrain hypoplasia, with a similar effect on the postnatal growth of the cerebellum. In contrast, Smarca1 mutants exhibited enlarged forebrains with delayed progenitor differentiation and increased neuronal output. Here, we utilized cerebellar granule neuron precursor (GNP) cultures from Smarca1 mutant mice (Ex6DEL) to explore the requirement for Snf2l on progenitor homeostasis. The Ex6DEL GNPs showed delayed differentiation upon plating that was not attributed to changes in the Sonic Hedgehog pathway but was associated with overexpression of numerous positive effectors of proliferation, including targets of Wnt activation. Transcriptome analysis identified increased expression of Fosb and Fosl2 while ATACseq experiments identified a large increase in chromatin accessibility at promoters many enriched for Fos/Jun binding sites. Nonetheless, the elevated proliferation index was transient and the Ex6DEL cultures initiated differentiation with a high concordance in gene expression changes to the wild type cultures. Genes specific to Ex6DEL differentiation were associated with an increased activation of the ERK signaling pathway. Taken together, this data provides the first indication of how Smarca1 mutations alter progenitor cell homeostasis and contribute to changes in brain size.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i8-i9
Author(s):  
Abigail Cleveland ◽  
Daniel Malawsky ◽  
Mehal Churiwal ◽  
Timothy Gershon

Abstract Hyperactivation of Sonic Hedgehog (SHH) signaling pathway drives tumor progression in the largest medulloblastoma subgroup. During cerebellar development, promoters of SHH target genes show inhibitory trimethylation of histone H3 at lysine 27 (H3K27me3), mediated by the Polycomb Repressive Complex 2 (PRC2). Here, we explored the regulation of cerebellar growth and medulloblastoma tumorigenesis by PRC2 complex components EED and EZH2. For developmental studies, we conditionally deleted Eed or Ezh2 in the Atoh1 lineage that gives rise to the cerebellar granule neuron progenitors (CGNP) that are cells of origin for SHH medulloblastomas. For tumor studies, we bred the conditional Eed- or Ezh2-deleted mouse lines with mice genetically engineered to develop SHH medulloblastoma. Our developmental studies showed that Eed was absolutely required for cerebellar growth. Eed-deleted CGNPs underwent aberrant, myocyte-like differentiation and spontaneous apoptosis, resulting in cerebellar hypoplasia. In contrast, Ezh2 deletion produced no developmental phenotype, despite blocking all H3K27me3 in CGNPs. Our tumor studies showed that Eed-deleted medulloblastomas similarly showed aberrant, myocyte differentiation, but unlike CGNPs, did not undergo widespread apoptosis. Eed-deleted medulloblastomas progressed more rapidly than control tumors, indicating that the inappropriate, muscle-like differentiation did not slow tumor growth. Ezh2-deleted medulloblastomas similarly progressed more rapidly than controls. Our data show that the PRC2 complex acts to enforce neuronal lineage commitment in both development and tumorigenesis and to restrain tumor growth in SHH medulloblastoma. Myocyte differentiation in Eed-deleted tumors suggests that PRC2 loss of function may contribute to the medullomyoblastomas that have been observed in patients. The differences in developmental phenotype show that EZH2 and EED functions are non-identical and can be dissociated, while similar increase in tumor progression show tumor suppressive functions for both EED and EZH2.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i4-i4
Author(s):  
Haritha Kunhiraman ◽  
Anna Kenney

Abstract Medulloblastoma (MB) is the most common pediatric brain malignancy. MB comprises 5 major subgroups known as WNT, SHH p53wt, SHH p53mut, Group 3 and Group 4. Among the four MB subgroups SHH group is the most dominant molecular subgroup in infants and adults. These tumors are proposed to arise from cerebellar granule neuron precursors (CGNPs), whose developmental expansion requires SHH signaling from the neighboring Purkinje neurons. Previous reports suggest that SHH group features a unique tumor microenvironment compared with other MB groups. Recently, we performed cytokine array analysis of culture media from different MB cell lines. Interestingly, our data showed increased levels of IGFBP2 produced by SHH MB cell lines compared to others. We confirmed these results using ELISA and Western blotting from 3 human SHH MB cell lines, and Smo/A1 mouse tumor cells. IGFBP2 is a member of IGFBP super family of proteins; it plays important roles in tumor cell proliferation, metastasis and drug resistance. We analyzed the role of IGFBP2 in SHH group medulloblastoma tumor growth and metastasis. IGFBP2 knock-down stable cell lines showed phenotypic changes including reduced cell proliferation, cell migration and colony size. Our preliminary in vitro data suggest IGFBP2 exerts it metastasis-promoting role in SHH MB by regulating the expression of EMT marker proteins such as N cadherin, slug etc. and matrix remodeling proteins like MMPs and TIMPs. We are currently performing functional studies in organotypic tumor slice cultures to validate these findings and establish IGFBP2 as a novel regulator of aggressive tumor growth and spread in SHH MB.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i36-i37
Author(s):  
Sheila Alcantara Llaguno ◽  
Inga Nazarenko ◽  
Yuntao Chen ◽  
Daochun Sun ◽  
Gaspare La Rocca ◽  
...  

Abstract To determine the role of microRNA regulation in brain tumor development, we incorporated a conditional allele of the microRNA processing enzyme Dicer to a previously characterized glioma mouse model based on inactivation of the tumor suppressors Nf1, Trp53, and Pten using the Nestin-creERT2 transgene. Loss of Dicer and tumor suppressors at adult ages led to glioma development; however, mutant mice tamoxifen induced at early postnatal ages developed medulloblastoma instead of glioma. The switch in tumor spectrum occurred with 100% penetrance and tumors were histologically indistinguishable from human medulloblastoma (MB). The minimum genetic mutations required for MB formation were Dicer and Trp53. Nf1 was dispensable, while additional loss of Pten produced more invasive tumors and leptomeningeal metastases. The time window for initiation of tumorigenesis was until the 2nd postnatal week, coinciding with the disappearance of the external granule layer (EGL), where cerebellar granule neuron precursors (CGNPs) undergo proliferation. Analysis of pre-symptomatic mutant mice showed proliferative defects and retained cells in the EGL, suggesting that the tumors may arise from CGNPs. However, targeting a subset of CGNPs using Math1-creERT2 did not lead to MB development, suggesting that an earlier EGL precursor may be required for tumorigenesis. Analysis of tumor transcriptome and MB subtype-specific genes and markers show that Dicer tumors most resemble extremely high risk p53-mutated SHH MB. Small RNA and mRNA sequencing analyses showed downregulation of microRNAs and dysregulation of its targets such as N-Myc. These studies demonstrate a role for microRNAs in MB development and show a fully penetrant genetic mouse model of highly metastatic MB.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 254
Author(s):  
Alessandra Boni ◽  
Marco Ranalli ◽  
Giada Del Baldo ◽  
Roberto Carta ◽  
Mariachiara Lodi ◽  
...  

Down syndrome (DS) is the most common chromosome abnormality with a unique cancer predisposition syndrome pattern: a higher risk to develop acute leukemia and a lower incidence of solid tumors. In particular, brain tumors are rarely reported in the DS population, and biological behavior and natural history are not well described and identified. We report a case of a 10-year-old child with DS who presented with a medulloblastoma (MB). Histological examination revealed a classic MB with focal anaplasia and the molecular profile showed the presence of a CTNNB1 variant associated with the wingless (WNT) molecular subgroup with a good prognosis in contrast to our case report that has shown an early metastatic relapse. The nearly seven-fold decreased risk of MB in children with DS suggests the presence of protective biological mechanisms. The cerebellum hypoplasia and the reduced volume of cerebellar granule neuron progenitor cells seem to be a possible favorable condition to prevent MB development via inhibition of neuroectodermal differentiation. Moreover, the NOTCH/WNT dysregulation in DS, which is probably associated with an increased risk of leukemia, suggests a pivotal role of this pathway alteration in the pathogenesis of MB; therefore, this condition should be further investigated in future studies by molecular characterizations.


2021 ◽  
Author(s):  
Marlinde J. Smit ◽  
Inna Armandari ◽  
Irena Bockaj ◽  
Tosca E.I. Martini ◽  
Walderik W. Zomerman ◽  
...  

SummarySonic Hedgehog (SHH) medulloblastoma originates from the cerebellar granule neuron progenitor (CGNP) lineage that depends on Hedgehog signaling for its perinatal expansion. While SHH tumors exhibit overall deregulation of this pathway, they also show patient age-specific aberrations.To investigate if the developmental stage of the CGNP can account for these age-specific lesions, we analyzed developing murine CGNP transcriptomes and observed highly dynamic gene expression as function of age. Cross-species comparison with human SHH medulloblastoma showed partial maintenance of these expression patterns, and highlighted low primary cilium expression as hallmark of infant medulloblastoma and early embryonic CGNPs. This coincided with reduced responsiveness to upstream Shh pathway component Smoothened, while sensitivity to downstream components Sufu and Gli was retained.Together, these findings can explain the preference for SUFU mutations in infant medulloblastoma and suggest that drugs targeting the downstream SHH pathway will be most appropriate for infant patients.


Sign in / Sign up

Export Citation Format

Share Document