Consistent Estimation of Strain Rate Fields from GNSS Velocity Data Using Basis Function Expansion with ABIC

Author(s):  
Tomohisa Okazaki ◽  
Yukitoshi Fukahata ◽  
Takuya Nishimura

Abstract Present day crustal displacement rates can be accurately observed at stations of global navigation satellite system (GNSS), and crustal deformation has been investigated by estimating strain-rate fields from discrete GNSS data. The method proposed by Shen et al. (J Geophys Res 101:27957–27980, 1996) offers a simple formulation for simultaneously estimating smooth velocity and strain-rate fields, and it has contributed to clarify crustal deformation fields in many regions all over the world. However, in this paper, we point out three theoretical disadvantages of the method: mathematical inconsistency between estimated velocity and strain-rate fields, inability to objectively determine the optimal value of a hyperparameter that controls smoothness, and inaccurate estimation of uncertainty. As an alternative, we propose a method of basis function expansion with Akaike's Bayesian information criterion (ABIC), which overcomes the above difficulties. Application of the two methods to GNSS data in Japan reveals that the inconsistency in the method of Shen et al. is generally insignificant, but could be serious in regions with sparser observation stations such as in islet areas. More importantly, the method of basis function expansion with ABIC shows a significantly better performance than the method of Shen et al. in terms of the trade-off curve between the residual of fitting and the roughness of velocity field. The estimated strain-rate field with the basis function expansion clearly exhibits a low strain-rate zone in the forearc from the southern Tohoku district to central Japan. We also find that the Ou Backbone Range has several contractive spots around active volcanoes and that these locations well correspond to the subsidence areas detected by InSAR after the 2011 Tohoku-oki earthquake. Thus, the method of basis function expansion with ABIC would serve as an effective tool for estimating strain-rate fields from GNSS data.

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Tomohisa Okazaki ◽  
Yukitoshi Fukahata ◽  
Takuya Nishimura

AbstractPresent day crustal displacement rates can be accurately observed at stations of global navigation satellite system (GNSS), and crustal deformation has been investigated by estimating strain-rate fields from discrete GNSS data. For this purpose, a modified least-square inversion method was proposed by Shen et al. (J Geophys Res 101:27957–27980, 1996). This method offers a simple formulation for simultaneously estimating smooth velocity and strain-rate fields from GNSS data, and it has contributed to clarify crustal deformation fields in many regions all over the world. However, we notice three theoretical points to be examined when we apply the method: mathematical inconsistency between estimated velocity and strain-rate fields, difficulty in objectively determining the optimal value of a hyperparameter that controls smoothness, and inappropriate estimation of uncertainty. In this study, we propose a method of basis function expansion with Akaike’s Bayesian information criterion (ABIC), which overcomes the above difficulties. Application of the two methods to GNSS data in Japan reveals that the inconsistency in the method of Shen et al. is generally insignificant, but could be clear in regions with sparser observation stations such as in islet areas. The method of basis function expansion with ABIC shows a significantly better performance than the method of Shen et al. in terms of the trade-off curve between the residual of fitting and the roughness of velocity field. The estimated strain-rate field with the basis function expansion clearly exhibits a low strain-rate zone in the forearc from the southern Tohoku district to central Japan. We also find that the Ou Backbone Range has several contractive spots around active volcanoes and that these locations well correspond to the subsidence areas detected by InSAR after the 2011 Tohoku-oki earthquake. Thus, the method of basis function expansion with ABIC would serve as an effective tool for estimating strain-rate fields from GNSS data.


2019 ◽  
Vol 91 (2A) ◽  
pp. 552-572 ◽  
Author(s):  
Jessica R. Murray ◽  
Noel Bartlow ◽  
Yehuda Bock ◽  
Benjamin A. Brooks ◽  
James Foster ◽  
...  

Abstract Regional networks of Global Navigation Satellite System (GNSS) stations cover seismically and volcanically active areas throughout the United States. Data from these networks have been used to produce high-precision, three-component velocity fields covering broad geographic regions as well as position time series that track time-varying crustal deformation. This information has contributed to assessing interseismic strain accumulation and related seismic hazard, revealed previously unknown occurrences of aseismic fault slip, constrained coseismic slip estimates, and enabled monitoring of volcanic unrest and postseismic deformation. In addition, real-time GNSS data are now widely available. Such observations proved invaluable for tracking the rapidly evolving eruption of Kīlauea in 2018. Real-time earthquake source modeling using GNSS data is being incorporated into tsunami warning systems, and a vigorous research effort is focused on quantifying the contribution that real-time GNSS can make to improve earthquake early warnings as part of the Advanced National Seismic System ShakeAlert system. Real-time GNSS data can also aid in the tracking of ionospheric disturbances and precipitable water vapor for weather forecasting. Although regional GNSS and seismic networks generally have been established independently, their spatial footprints often overlap, and in some cases the same institution operates both types of networks. Further integration of GNSS and seismic networks would promote joint use of the two data types to better characterize earthquake sources and ground motion as well as offer opportunities for more efficient network operations. Looking ahead, upgrading network stations to leverage new GNSS technology could enable more precise positioning and robust real-time operations. New computational approaches such as machine learning have the potential to enable full utilization of the large amounts of data generated by continuous GNSS networks. Development of seafloor Global Positioning System-acoustic networks would provide unique information for fundamental and applied research on subduction zone seismic hazard and, potentially, monitoring.


2013 ◽  
Vol 805-806 ◽  
pp. 851-854
Author(s):  
Zhi Ge Jia ◽  
Zhao Sheng Nie ◽  
Wei Wang ◽  
Xiao Guan ◽  
Di Jin Wang

This work describes the field testing process of Global Navigation Satellite System (GNSS) receiver under 220KV, 500KV UHV transmission line and standard calibration field. Analysis for GNSS data results shows that the radio interference generated by EHV transmission lines have no effect on GNSS receiver internal noise levels and valid GNSS observation rate. Within 50 meters of the EHV transmission lines, the multi-path effects (mp1 and mp2 value) significantly exceeded the normal range and becomes larger with the increase of the voltage .outside 50 meters of the EHV transmission line, the multi-path effects have almost no effect on the high-precision GNSS observations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Takeshi Iinuma ◽  
Motoyuki Kido ◽  
Yusaku Ohta ◽  
Tatsuya Fukuda ◽  
Fumiaki Tomita ◽  
...  

Crustal deformation of the seafloor is difficult to observe solely using global navigation satellite system (GNSS). The GNSS-acoustic (GNSS-A) technique was developed to observe seafloor crustal deformation, and it has produced a steady series of successful observations with remarkable results related to crustal deformation associated with huge earthquakes around the Japanese Islands. However, utilizing GNSS-A incurs very large financial and human costs as it requires the use of a research vessel as a surface platform and has a limited observation frequency, which is less than once a year at seafloor stations along the Japan Trench. To conduct frequent observations, an automatic GNSS-A data acquisition system was developed that operates via an unmanned surface vehicle (wave glider). The first observations using this system were performed at a seafloor station off Aomori Prefecture in July 2019. The wave glider was equipped with two GNSS antennas, an acoustic transducer, a microelectromechanical system gyroscope, and associated control and logging units. Data acquisition and autonomous activation of the seafloor stations were successfully executed by controlling the power supply to the payload via satellite communication with the wave glider. The glider rarely strayed off the configured course and the solar panels generated sufficient power to perform the observations although the weather was mostly cloudy. The GNSS-A data processing results show that the position of the station was determined with the same accuracy and precision as in previous observations performed using a research vessel.


2017 ◽  
Vol 11 (2) ◽  
pp. 827-840 ◽  
Author(s):  
Luc Girod ◽  
Christopher Nuth ◽  
Andreas Kääb ◽  
Bernd Etzelmüller ◽  
Jack Kohler

Abstract. Acquiring data to analyse change in topography is often a costly endeavour requiring either extensive, potentially risky, fieldwork and/or expensive equipment or commercial data. Bringing the cost down while keeping the precision and accuracy has been a focus in geoscience in recent years. Structure from motion (SfM) photogrammetric techniques are emerging as powerful tools for surveying, with modern algorithm and large computing power allowing for the production of accurate and detailed data from low-cost, informal surveys. The high spatial and temporal resolution permits the monitoring of geomorphological features undergoing relatively rapid change, such as glaciers, moraines, or landslides. We present a method that takes advantage of light-transport flights conducting other missions to opportunistically collect imagery for geomorphological analysis. We test and validate an approach in which we attach a consumer-grade camera and a simple code-based Global Navigation Satellite System (GNSS) receiver to a helicopter to collect data when the flight path covers an area of interest. Our method is based and builds upon Welty et al. (2013), showing the ability to link GNSS data to images without a complex physical or electronic link, even with imprecise camera clocks and irregular time lapses. As a proof of concept, we conducted two test surveys, in September 2014 and 2015, over the glacier Midtre Lovénbreen and its forefield, in northwestern Svalbard. We were able to derive elevation change estimates comparable to in situ mass balance stake measurements. The accuracy and precision of our DEMs allow detection and analysis of a number of processes in the proglacial area, including the presence of thermokarst and the evolution of water channels.


2020 ◽  
Vol 12 (3) ◽  
pp. 411 ◽  
Author(s):  
Sangeetha Shankar ◽  
Michael Roth ◽  
Lucas Andreas Schubert ◽  
Judith Anne Verstegen

Up-to-date geodatasets on railway infrastructure are valuable resources for the field of transportation. This paper investigates three methods for mapping the center lines of railway tracks using heterogeneous sensor data: (i) conditional selection of satellite navigation (GNSS) data, (ii) a combination of inertial measurements (IMU data) and GNSS data in a Kalman filtering and smoothing framework and (iii) extraction of center lines from laser scanner data. Several combinations of the methods are compared with a focus on mapping in tree-covered areas. The center lines of the railway tracks are extracted by applying these methods to a test dataset collected by a road-rail vehicle. The guard rails in the test area were also extracted during the center line detection process. The combination of methods (i) and (ii) gave the best result for the track on which the measurement vehicle had moved, mapping almost 100% of the track. The combination of methods (ii) and (iii) and the combination of all three methods gave the best result for the other parallel tracks, mapping between 25% and 80%. The mean perpendicular distance of the mapped center lines from the reference data was 1.49 meters.


2017 ◽  
Vol 71 (1) ◽  
pp. 134-150
Author(s):  
Haiying Liu ◽  
Lei Xu ◽  
Xiaolin Meng ◽  
Xibei Chen ◽  
Junyi Li

Global Navigation Satellite System (GNSS) attitude determination and positioning play an important role in many navigation applications. However, the two GNSS-based problems are usually treated separately. This ignores the constraint information of the GNSS antenna array and the accuracy is limited. To improve the performance of navigation, an integrated attitude and position determination method based on an affine constraint model is presented. In the first part, the GNSS array model and affine constrained attitude determination method are compared with the unconstrained methods. Then the integrated attitude and position determination method is presented. The performance of the proposed method is tested with a series of static data and dynamic experimental GNSS data. The results show that the proposed method can improve the success rate of ambiguity resolution to further improve the accuracy of attitude determination and relative positioning compared to the unconstrained methods.


2020 ◽  
Vol 8 ◽  
Author(s):  
Shun-ichi Watanabe ◽  
Tadashi Ishikawa ◽  
Yusuke Yokota ◽  
Yuto Nakamura

Global Navigation Satellite System–Acoustic ranging combined seafloor geodetic technique (GNSS-A) has extended the geodetic observation network into the ocean. The key issue for analyzing the GNSS-A data is how to correct the effect of sound speed variation in the seawater. We constructed a generalized observation equation and developed a method to directly extract the gradient sound speed structure by introducing appropriate statistical properties in the observation equation, especially the data correlation term. In the proposed scheme, we calculate the posterior probability based on the empirical Bayes approach using the Akaike’s Bayesian Information Criterion for model selection. This approach enabled us to suppress the overfitting of sound speed variables and thus to extract simpler sound speed field and stable seafloor positions from the GNSS-A dataset. The proposed procedure is implemented in the Python-based software “GARPOS” (GNSS-Acoustic Ranging combined POsitioning Solver).


2018 ◽  
Vol 106 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Marcelo Romero ◽  
Mike Mustafa Berber

Abstract Twenty four hour GNSS (Global Navigation Satellite System) data acquired monthly for 5 years from 8 CORS (Continuously Operating Reference Station) stations in Central Valley, California are processed and vertical velocities of the points are determined. To process GNSS data, online GNSS data processing service APPS (Automatic Precise Positioning Service) is used. GNSS data downloaded from NGS (National Geodetic Survey) CORS are analyzed and subsidence at these points is portrayed with graphics. It is revealed that elevation changes range from 5 mm uplift in the north to 163 mm subsidence in the southern part of the valley.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1768
Author(s):  
Chris Danezis ◽  
Miltiadis Chatzinikos ◽  
Christopher Kotsakis

Permanent Global Navigation Satellite Systems (GNSS) reference stations are well established as a powerful tool for the estimation of deformation induced by man-made or physical processes. GNSS sensors are successfully used to determine positions and velocities over a specified time period, with unprecedented accuracy, promoting research in many safety-critical areas, such as geophysics and geo-tectonics, tackling problems that torment traditional equipment and providing deformation products with absolute accuracy. Cyprus, being located at the Mediterranean fault, exhibits a very interesting geodynamic regime, which has yet to be investigated thoroughly. Accordingly, this research revolves around the estimation of crustal deformation in Cyprus using GNSS receivers. CYPOS (CYprus POsitioning System), a network of seven permanent GNSS stations has been operating since 2008, under the responsibility of the Department of Lands and Surveys. The continuous flow of positioning data collected over this network, offers the required information to investigate the behavior of the crustal deformation field of Cyprus using GNSS sensors for the first time. This paper presents the results of a multi-year analysis (11/2011–01/2017) of daily GNSS data and provides inferences of linear and nonlinear deforming signals into the position time series of the network stations. Specifically, 3D station velocities and seasonal periodic displacements are jointly estimated and presented via a data stacking approach with respect to the IGb08 reference frame.


Sign in / Sign up

Export Citation Format

Share Document