intrinsic apoptosis pathway
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 61)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Vol 23 (2) ◽  
pp. 643
Author(s):  
Izchel Figarola-Centurión ◽  
Martha Escoto-Delgadillo ◽  
Gracia Viviana González-Enríquez ◽  
Juan Ernesto Gutiérrez-Sevilla ◽  
Eduardo Vázquez-Valls ◽  
...  

HIV-Associated neurocognitive disorder (HAND) is one of the major concerns since it persists in 40% of this population. Nowadays, HAND neuropathogenesis is considered to be caused by the infected cells that cross the brain–blood barrier and produce viral proteins that can be secreted and internalized into neurons leading to disruption of cellular processes. The evidence points to viral proteins such as Tat as the causal agent for neuronal alteration and thus HAND. The hallmarks in Tat-induced neurodegeneration are endoplasmic reticulum stress and mitochondrial dysfunction. Sirtuins (SIRTs) are NAD+-dependent deacetylases involved in mitochondria biogenesis, unfolded protein response, and intrinsic apoptosis pathway. Tat interaction with these deacetylases causes inhibition of SIRT1 and SIRT3. Studies revealed that SIRTs activation promotes neuroprotection in neurodegenerative diseases such Alzheimer’s and Parkinson’s disease. Therefore, this review focuses on Tat-induced neurotoxicity mechanisms that involve SIRTs as key regulators and their modulation as a therapeutic strategy for tackling HAND and thereby improving the quality of life of people living with HIV.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 199
Author(s):  
Jae-Seek You ◽  
HyangI Lim ◽  
Jeong-Yeon Seo ◽  
Kyeong-Rok Kang ◽  
Do Kyung Kim ◽  
...  

25-hydroxycholesterol (25-HC) is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase during cholesterol metabolism. The aim of this study was to verify whether 25-HC induces oxiapoptophagy in fibroblasts. 25-HC not only decreased the survival of L929 cells, but also increased the number of cells with condensed chromatin and altered morphology. Fluorescence-activated cell sorting results showed that there was a dose-dependent increase in the apoptotic populations of L929 cells upon treatment with 25-HC. 25-HC-induced apoptotic cell death was mediated by the death receptor-dependent extrinsic and mitochondria-dependent intrinsic apoptosis pathway, through the cascade activation of caspases including caspase-8, -9, and -3 in L929 cells. There was an increase in the levels of reactive oxygen species and inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2 in L929 cells treated with 25-HC. Moreover, 25-HC caused an increase in the expression of beclin-1 and microtubule-associated protein 1A/1B-light chain 3, an autophagy biomarker, in L929 cells. There was a significant decrease in the phosphorylation of protein kinase B (Akt) in L929 cells treated with 25-HC. Taken together, 25-HC induced oxiapoptophagy through the modulation of Akt and p53 cellular signaling pathways in L929 cells.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Gurdeep Marwarha ◽  
Øystein Røsand ◽  
Nathan Scrimgeour ◽  
Katrine Hordnes Slagsvold ◽  
Morten Andre Høydal

Apoptotic cell death of cardiomyocytes is a characteristic hallmark of ischemia–reperfusion (I/R) injury. The master hypoxamiR, microRNA-210 (miR-210), is considered the primary driver of the cellular response to hypoxic stress. However, to date, no consensus has emerged with regards to the polarity of the miR-210-elicited cellular response, as miR-210 has been shown to exacerbate as well as attenuate hypoxia-driven apoptotic cell death. Herein, in AC-16 cardiomyocytes subjected to hypoxia-reoxygenation (H-R) stress, we unravel novel facets of miR-210 biology and resolve the biological response mediated by miR-210 into the hypoxia and reoxygenation temporal components. Using transient overexpression and decoy/inhibition vectors to modulate miR-210 expression, we elucidated a Janus role miR-210 in the cellular response to H-R stress, wherein miR-210 mitigated the hypoxia-induced apoptotic cell death but exacerbated apoptotic cell death during cellular reoxygenation. We further delineated the underlying cellular mechanisms that confer this diametrically opposite effect of miR-210 on apoptotic cell death. Our exhaustive biochemical assays cogently demonstrate that miR-210 attenuates the hypoxia-driven intrinsic apoptosis pathway, while significantly augmenting the reoxygenation-induced caspase-8-mediated extrinsic apoptosis pathway. Our study is the first to unveil this Janus role of miR-210 and to substantiate the cellular mechanisms that underlie this functional duality.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 51
Author(s):  
Daniel Westaby ◽  
Juan M. Jimenez-Vacas ◽  
Ana Padilha ◽  
Andreas Varkaris ◽  
Steven P. Balk ◽  
...  

Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6877
Author(s):  
Mahsa Gholizadeh ◽  
Mohammad Amin Doustvandi ◽  
Fateme Mohammadnejad ◽  
Mahdi Abdoli Shadbad ◽  
Habib Tajalli ◽  
...  

Photodynamic therapy (PDT) is a light-based cancer therapy approach that has shown promising results in treating various malignancies. Growing evidence indicates that cancer stem cells (CSCs) are implicated in tumor recurrence, metastasis, and cancer therapy resistance in colorectal cancer (CRC); thus, targeting these cells can ameliorate the prognosis of affected patients. Based on our bioinformatics results, SOX2 overexpression is significantly associated with inferior disease-specific survival and worsened the progression-free interval of CRC patients. Our results demonstrate that zinc phthalocyanine (ZnPc)-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially decrease tumor migration via downregulating MMP9 and ROCK1 and inhibit the clonogenicity of SW480 cells via downregulating CD44 and SOX2. Despite inhibiting clonogenicity, ZnPc-PDT with 12 J/cm2 irradiation fails to downregulate CD44 expression in SW480 cells. Our results indicate that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially reduce the cell viability of SW480 cells and stimulate autophagy in the tumoral cells. Moreover, our results show that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially arrest the cell cycle at the sub-G1 level, stimulate the intrinsic apoptosis pathway via upregulating caspase-3 and caspase-9 and downregulating Bcl-2. Indeed, our bioinformatics results show considerable interactions between the studied CSC-related genes with the studied migration- and apoptosis-related genes. Collectively, the current study highlights the potential role of ZnPc-PDT in inhibiting stemness and CRC development, which can ameliorate the prognosis of CRC patients.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1506
Author(s):  
Mei-Yi Lin ◽  
Wan-Ting Cheng ◽  
Hui-Ching Cheng ◽  
Wan-Ching Chou ◽  
Hsiu-I Chen ◽  
...  

Doxorubicin (Dox) is an effective anthracycline anticancer drug. However, recent studies have revealed that Dox resistance is a highly critical issue, and a significant reason for treatment failure. Baicalin is a flavonoid component in the roots of Scutellaria baicalensis Georgi; however, whether baicalin can increase chemosensitivity in breast cancers is still unclear. In this study, we found that cellular apoptosis occurs when excessive intracellular ROS is generated, triggered by the dual intervention of baicalin and doxorubicin, which increases intracellular calcium [Ca2+]i concentrations. Increased [Ca2+]i concentrations decrease the mitochondrial membrane potential (△Ψm), thereby causing cellular apoptosis. Pretreatment with NAC (ROS inhibitor) or BATBA (Ca2+ chelator) reduces baicalin-induced chemosensitivity. The findings of this study demonstrate that the effect of baicalin on Dox treatment could enhance cytotoxicity toward breast cancer cells via the ROS/[Ca2+]i-mediated intrinsic apoptosis pathway—thus potentially lessening the required dosage of doxorubicin, and further exploring associated mechanisms in combined treatments for breast cancer clinical interventions in the future.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Harshit Shah ◽  
Lizhi Pang ◽  
Steven Qian ◽  
Venkatachalem Sathish

AbstractKnocking down delta-5-desaturase (D5D) by siRNA or shRNA is a promising strategy to achieve 8-hydroxyoctanoic acid (8-HOA) production for cancer inhibition. However, the RNAi-based strategy to stimulate 8-HOA is restricted due to endonucleases mediated physiological degradation and off-target effects. Thus, to get persistent 8-HOA in the cancer cell, we recognized a D5D inhibitor Iminodibenzyl. Here, we have postulated that Iminodibenzyl, by inhibiting D5D activity, could shift the di-homo-gamma-linolenic acid (DGLA) peroxidation from arachidonic acid to 8-HOA in high COX-2 microenvironment of 4T1 and MDA-MB-231 breast cancer cells. We observed that Iminodibenzyl stimulated 8-HOA caused HDAC activity reduction resulting in intrinsic apoptosis pathway activation. Additionally, reduced filopodia and lamellipodia, and epithelial-mesenchymal transition markers give rise to decreased cancer cell migration. In the orthotopic breast cancer model, the combination of Iminodibenzyl and DGLA reduced tumor size. From in vitro and in vivo studies, we concluded that Iminodibenzyl could reprogram COX-2 induced DGLA peroxidation to produce anti-cancer activity.


2021 ◽  
Vol 22 (16) ◽  
pp. 8807
Author(s):  
Ah-Ra Lyu ◽  
Tae-Hwan Kim ◽  
Sun-Ae Shin ◽  
Eung-Hyub Kim ◽  
Yang Yu ◽  
...  

Although previous studies continuously report an increased risk of hearing loss in diabetes patients, the impact of the disease on the inner ear remains unexplored. Herein, we examine the pathophysiology of diabetes-associated hearing impairment and cochlear synaptopathy in a mouse model of diabetes. Male B6.BKS(D)-Leprdb/J (db/db, diabetes) and heterozygote (db/+, control) mice were assigned into each experimental group (control vs. diabetes) based on the genotype and tested for hearing sensitivity every week from 6 weeks of age. Each cochlea was collected for histological and biological assays at 14 weeks of age. The diabetic mice exerted impaired hearing and a reduction in cochlear blood flow and C-terminal-binding protein 2 (CtBP2, a presynaptic ribbon marker) expression. Ultrastructural images revealed severely damaged mitochondria from diabetic cochlea accompanied by a reduction in Cytochrome c oxidase subunit 4 (COX4) and CR6-interacting factor 1 (CRIF1). The diabetic mice presented significantly decreased levels of platelet endothelial cell adhesion molecule (PECAM-1), B-cell lymphoma 2 (BCL-2), and procaspase-9, but not procaspase-8. Importantly, significant changes were not found in necroptotic programmed cell death markers (receptor-interacting serine/threonine-protein kinase 1, RIPK1; RIPK3; and mixed lineage kinase domain-like pseudokinase, MLKL) between the groups. Taken together, diabetic hearing loss is accompanied by synaptopathy, microangiopathy, damage to the mitochondrial structure/function, and activation of the intrinsic apoptosis pathway. Our results imply that mitochondrial dysfunction is deeply involved in diabetic hearing loss, and further suggests the potential benefits of therapeutic strategies targeting mitochondria.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4414
Author(s):  
Fabiana Sélos Guerra ◽  
Flaviana Rodrigues Fintelman Dias ◽  
Anna Claudia Cunha ◽  
Patricia Dias Fernandes

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor clinical outcome, and currently no effective targeted therapies are available. Indole compounds have been shown to have potential antitumor activity against various cancer cells. In the present study, we found that new four benzo[f]indole-4,9-dione derivatives reduce TNBC cell viability by reactive oxygen species (ROS) accumulation stress in vitro. Further analyses showed that LACBio1, LACBio2, LACBio3 and LACBio4 exert cytotoxic effects on MDA-MB 231 cancer cell line by inducing the intrinsic apoptosis pathway, activating caspase 9 and Bax/Bcl-2 pathway in vitro. These results provide evidence that these new four benzo[f]indole-4,9-dione derivatives could be potential therapeutic agents against TNBC by promoting ROS stress-mediated apoptosis through intrinsic-pathway caspase activation.


2021 ◽  
Vol 7 (25) ◽  
pp. eabf8577
Author(s):  
Hin Chu ◽  
Huiping Shuai ◽  
Yuxin Hou ◽  
Xi Zhang ◽  
Lei Wen ◽  
...  

Infection by highly pathogenic coronaviruses results in substantial apoptosis. However, the physiological relevance of apoptosis in the pathogenesis of coronavirus infections is unknown. Here, with a combination of in vitro, ex vivo, and in vivo models, we demonstrated that protein kinase R–like endoplasmic reticulum kinase (PERK) signaling mediated the proapoptotic signals in Middle East respiratory syndrome coronavirus (MERS-CoV) infection, which converged in the intrinsic apoptosis pathway. Inhibiting PERK signaling or intrinsic apoptosis both alleviated MERS pathogenesis in vivo. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV induced apoptosis through distinct mechanisms but inhibition of intrinsic apoptosis similarly limited SARS-CoV-2– and SARS-CoV–induced apoptosis in vitro and markedly ameliorated the lung damage of SARS-CoV-2–inoculated human angiotensin-converting enzyme 2 (hACE2) mice. Collectively, our study provides the first evidence that virus-induced apoptosis is an important disease determinant of highly pathogenic coronaviruses and demonstrates that this process can be targeted to attenuate disease severity.


Sign in / Sign up

Export Citation Format

Share Document