chloroplast nucleoids
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Kazusato Oikawa ◽  
Ayaka Tateishi ◽  
Masaki Odahara ◽  
Yutaka Kodama ◽  
Keiji Numata

Each plant cell has hundreds of copies of the chloroplast genome and chloroplast transgenes do not undergo silencing. Therefore, chloroplast transformation has many powerful potential agricultural and industrial applications. We previously succeeded in integrating exogenous genes into the chloroplast genome using peptide–DNA complexes composed of plasmid DNA and a fusion peptide consisting of a cell-penetrating peptide (CPP) and a chloroplast transit peptide (cpPD complex). However, how cpPD complexes are transported into the chloroplast from outside the cell remains unclear. Here, to characterize the route by which these cpPD complexes move into chloroplasts, we tracked their movement from the extracellular space to the chloroplast stroma using a fluorescent label and confocal laser scanning microscopy (CLSM). Upon infiltration of cpPD complexes into the extracellular space of Arabidopsis thaliana leaves, the complexes reached the chloroplast surface within 6h. The cpPD complexes reached were engulfed by the chloroplast outer envelope membrane and gradually integrated into the chloroplast. We detected several cpPD complexes localized around chloroplast nucleoids and observed the release of DNA from the cpPD. Our results thus define the route taken by the cpPD complexes for gene delivery from the extracellular space to the chloroplast stroma.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ji Chen ◽  
Li Wang ◽  
Xiaowan Jin ◽  
Jian Wan ◽  
Lang Zhang ◽  
...  

Abstract Background The Spo0B-associated GTP-binding protein (Obg) GTPase, has diverse and important functions in bacteria, including morphological development, DNA replication and ribosome maturation. Homologs of the Bacillus subtilis Obg have been also found in chloroplast of Oryza sativa, but their primary roles remain unknown. Results We clarify that OsObgC1 is a functional homolog of AtObgC. The mutant obgc1-d1 exhibited hypersensitivity to the DNA replication inhibitor hydroxyurea. Quantitative PCR results showed that the ratio of chloroplast DNA to nuclear DNA in the mutants was higher than that of the wild-type plants. After DAPI staining, OsObgC1 mutants showed abnormal nucleoid architectures. The specific punctate staining pattern of OsObgC1-GFP signal suggests that this protein localizes to the chloroplast nucleoids. Furthermore, loss-of-function mutation in OsObgC1 led to a severe suppression of protein biosynthesis by affecting plastid rRNA processing. It was also demonstrated through rRNA profiling that plastid rRNA processing was decreased in obgc1-d mutants, which resulted in impaired ribosome biogenesis. The sucrose density gradient profiles revealed a defective chloroplast ribosome maturation of obgc1-d1 mutants. Conclusion Our findings here indicate that the OsObgC1 retains the evolutionarily biological conserved roles of prokaryotic Obg, which acts as a signaling hub that regulates DNA replication and ribosome biogenesis in chloroplast nucleoids.


2021 ◽  
Vol 118 (20) ◽  
pp. e2021053118
Author(s):  
Mari Takusagawa ◽  
Yusuke Kobayashi ◽  
Yoichiro Fukao ◽  
Kumi Hidaka ◽  
Masayuki Endo ◽  
...  

Compaction of bulky DNA is a universal issue for all DNA-based life forms. Chloroplast nucleoids (chloroplast DNA–protein complexes) are critical for chloroplast DNA maintenance and transcription, thereby supporting photosynthesis, but their detailed structure remains enigmatic. Our proteomic analysis of chloroplast nucleoids of the green alga Chlamydomonas reinhardtii identified a protein (HBD1) with a tandem repeat of two DNA-binding high mobility group box (HMG-box) domains, which is structurally similar to major mitochondrial nucleoid proteins transcription factor A, mitochondrial (TFAM), and ARS binding factor 2 protein (Abf2p). Disruption of the HBD1 gene by CRISPR-Cas9–mediated genome editing resulted in the scattering of chloroplast nucleoids. This phenotype was complemented when intact HBD1 was reintroduced, whereas a truncated HBD1 with a single HMG-box domain failed to complement the phenotype. Furthermore, ectopic expression of HBD1 in the mitochondria of yeast Δabf2 mutant successfully complemented the defects, suggesting functional similarity between HBD1 and Abf2p. Furthermore, in vitro assays of HBD1, including the electrophoretic mobility shift assay and DNA origami/atomic force microscopy, showed that HBD1 is capable of introducing U-turns and cross-strand bridges, indicating that proteins with two HMG-box domains would function as DNA clips to compact DNA in both chloroplast and mitochondrial nucleoids.


CYTOLOGIA ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. 177-178
Author(s):  
Yoshitaka Kamimura ◽  
Yusuke Kobayashi ◽  
Yoshiki Nishimura

2020 ◽  
Vol 102 (4) ◽  
pp. 730-746 ◽  
Author(s):  
Stephan Greiner ◽  
Hieronim Golczyk ◽  
Irina Malinova ◽  
Tommaso Pellizzer ◽  
Ralph Bock ◽  
...  

2019 ◽  
Author(s):  
Stephan Greiner ◽  
Hieronim Golczyk ◽  
Irina Malinova ◽  
Tommaso Pellizzer ◽  
Ralph Bock ◽  
...  

SummaryChloroplast nucleoids are large, compact nucleoprotein structures containing multiple copies of the plastid genome. Studies on structural and quantitative changes of plastid DNA (ptDNA) during leaf development are scarce and have produced controversial data. We have systematically investigated nucleoid dynamics and ptDNA quantities in mesophyll ofArabidopsis, tobacco, sugar beet, and maize from the early post-meristematic stage until necrosis. DNA of individual nucleoids was quantified by DAPI-based supersensitive epifluorescence microscopy. Nucleoids occurred in scattered, stacked or ring-shaped arrangements and in recurring patterns during leaf development remarkably similar between the species studied. Nucleoids per organelle varied from few in meristematic plastids to >30 in mature chloroplasts (corresponding to about 20-750 nucleoids per cell). Nucleoid ploidies ranged from haploid to >20-fold even within individual organelles, with average values between 2.6- and 6.7-fold and little changes during leaf development. DNA quantities per organelle increased gradually from about a dozen plastome copies in tiny plastids of apex cells to 70-130 copies in chloroplasts of about 7 μm diameter in mature mesophyll tissue, and from about 80 plastome copies in meristematic cells to 2,600-3,300 copies in mature diploid mesophyll cells without conspicuous decline during leaf development. Pulsed-field electrophoresis, restriction of high-molecular weight DNA from chloroplasts and gerontoplasts, and CsCl equilibrium centrifugation of single- and double-stranded ptDNA revealed no noticeable fragmentation of the organelle DNA during leaf development, implying that plastid genomes in mesophyll tissues are remarkably stable until senescence.Significance StatementPlastid DNA is organized in nucleoids that are highly dynamic in organization, structure and amount during leaf development. The present investigation fully resolves now this dynamic and is a precise cytogenetic characterization of nucleoids DNA spanning the entire life cycle of the leaf.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Yoshitaka Kamimura ◽  
Hitomi Tanaka ◽  
Yusuke Kobayashi ◽  
Toshiharu Shikanai ◽  
Yoshiki Nishimura

2016 ◽  
Vol 8 (5) ◽  
pp. 1459-1466 ◽  
Author(s):  
Yusuke Kobayashi ◽  
Takuto Otani ◽  
Kota Ishibashi ◽  
Toshiharu Shikanai ◽  
Yoshiki Nishimura

Sign in / Sign up

Export Citation Format

Share Document