scholarly journals A New Runoff Routing Scheme for Xin’anjiang Model and Its Routing Parameters Estimation Based on Geographical Information

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3429
Author(s):  
Shuaihong Zang ◽  
Zhijia Li ◽  
Cheng Yao ◽  
Ke Zhang ◽  
Mingkun Sun ◽  
...  

The Xin’anjiang model is a conceptual hydrological model, which has an essential application in humid and semi-humid regions. In the model, the parameters estimation of runoff routing has always been a significant problem in hydrology. The quantitative relationship between parameters of the lag-and-route method and catchment characteristics has not been well studied. In addition, channels in Muskingum method of the Xin’anjiang model are assumed to be virtual channels. Therefore, its parameters need to be estimated by observed flow data. In this paper, a new routing scheme for the Xin’anjiang model is proposed, adopting isochrones method for overland flow and the grid-to-grid Muskingum–Cunge–Todini (MCT) method for channel routing, so that the routing parameters can be estimated according to the geographic information. For the new routing scheme the average overland flow velocity can be determined through the land cover and overland slope, and the channel routing parameters can be determined through channel geometric characteristic, stream order and channel gradient. The improved model was applied at a 90 m grid scale to a nested watershed located in Anhui province, China. The parent Tunxi watershed, with a drainage area of 2692 km2, contains four internal points with available observed streamflow data, allowing us to evaluate the model’s ability to simulate the hydrologic processes within the watershed. Calibration and verification of the improved model were carried out for hourly time scales using hourly streamflow data from 1982 to 2005. Model performance was assessed by comparing simulated and observed flows at the watershed outlet and interior gauging stations. The performance of both original and new runoff routing schemes were tested and compared at hourly scale. Similar and satisfactory performances were achieved at the outlet both in the new runoff routing scheme using the estimated routing parameters and in the original runoff routing scheme using the calibrated routing parameters, with averaged Nash-Sutcliffe efficiency (NSE) of 0.92 and 0.93, respectively. Moreover, the new runoff routing scheme is also able to reproduce promising hydrographs at internal gauges in study catchment with the mean NSE ranging from 0.84 to 0.88. These results indicate that the parameter estimation approach is efficient and the developed model can satisfactorily simulate not only the streamflow at the parent watershed outlet, but also the flood hydrograph at the interior gauging points without model recalibration. This study can provide some guidance for the application of the Xin’anjiang model in ungauged areas.

Agropedology ◽  
2019 ◽  
Vol 29 (1) ◽  
Author(s):  
A. P. Bowlekar ◽  

In present study Kansa watershed in Satara district of Maharashtra was characterized for watershed parameters. Geographical Information Systems (GIS) and a high-resolution Digital Elevation Model (DEM) has been utilized for the estimation of morphological parameters. Several morphometric parameters have been computed and analyzed viz. linear aspects such as stream order, stream number, stream length, mean stream length, stream length ratio; areal aspects such as drainage density, stream frequency, drainage texture, elongation ratio, circularity ratio, form factor, constant of channel maintenance; relief aspects such as relief, relief ratio, relative relief, ruggedness number, length of overland flow. Impacts of morphometric parameters on flash flood characteristics have also been investigated. The presence of the maximum number of the first order segments shows that the basin is subjected to erosion and also that some areas of the basin are characterized by variations in lithology and topography. The form factor is 0.21, and the circulatory ratio is 0.42, which suggests an elongated type of catchment. Elongation ratio is 0.52, which indicates that watershed has high relief and steep slope. The estimated catchment characteristics may be useful to stimulate hydrological responses of the catchment.


1981 ◽  
Vol 34 (3) ◽  
pp. 392-413 ◽  
Author(s):  
A. N. Cockcroft

Following the Amoco Cadiz disaster in 1978 proposals were put forward, and ultimately accepted by IMCO, for a revision of the traffic separation schemes off Ushant and the Casquets, the broad effect of which was to keep large tankers (and those carrying hazardous cargoes) further off the French coast. The modifications came in for some criticism and recent Anglo-French proposals have now secured IMCO agreement. Prior to that a purely United Kingdom working group sought to formulate a comprehensive and continuous routing scheme for the whole English Channel.Captain Cockcroft who, as an observer for IAIN at IMCO and as RIN representative on the UK working group on Channel Routing, has played a leading part in these discussions, here describes some of the problems and considers issues raised by concepts such as ‘areas to be avoided’, and finally, within the context of traffic separation in straits, proposes alterations to the Collision Regulations which govern the crossing of traffic lanes and the use of inshore traffic zones.


2021 ◽  
Author(s):  
Temi Ologunorisa ◽  
Obioma Ogbuokiri ◽  
Adebayo Oluwole Eludoyin

Abstract Flooding events in the Lower Benue valley of Nigeria are often associated with huge damage to properties and loss of life in the adjoining communities. Specific objective of this study is to evaluate the impact of 2017 flood event as typical of the study area. Method used was an integrated environmental approach that combines analysis of rainfall and discharge data with social surveys, remote sensing and geographical information system. Standardized Precipitation Index (SPI), Precipitation Concentration Index (PCI) as well as flood damage curves were analysed with landuse/cover change and soil data to establish the nature of the flood and its impacts. Result showed that the flood in the study area is essentially saturation overland flow, which is more associated with saturation-excess than infiltration excess flow, and that the flood events are recurrent and predictable. 85% of the affected residents are however poor, earning an equivalent of US $4.3 daily, and live in non-reinforced concrete masonry (64%) and wooden buildings (24%). Many of the affected communities lived within flood plain and most buildings were structurally deficient. Victims received no compensation, and the properties were generally uninsured. The study recommends extensive flood control policy for the area and similar flood-prone communities.


2019 ◽  
Author(s):  
Hai-Min Lyu ◽  
Shui-Long Shen ◽  
Jun Yang ◽  
Zhen-Yu Yin

Abstract. Catastrophic urban floods result in severe inundation of underground facilities in recent years. This paper presents an integrated approach in which an algorithm is proposed to integrate the storm water management model (SWMM) into the geographical information system (GIS) to evaluate the inundation risk. The proposed algorithm simulates the flood inundation of overland flow and metro station for each schemed scenario. It involves i) determination of the grid location and spreading coefficient and ii) iterative calculation of the spreading process. Furthermore, to evaluate the potential inundation risks of metro systems, an equation to qualitatively calculate the inundation depth around a metro station is proposed. This equation considered the drainage capacity and characteristics of each metro station. The proposed method is applied to simulate the inundation risks of the metro system in the urban centre of Shanghai under 50-year, 100-year, and 500-year scenarios. Both the inundation extent and depth are derived. The proposed method is validated by verifying from the records of historical floods. The results demonstrate that in case of the 500-year-rainfall scenario, for an inundation depth of over 300 mm, the inundated area is up to 5.16 km2, which is 4.3 % of the studied area and that there are four metro stations inundated to a depth of over 300 mm.


2003 ◽  
Vol 48 (7) ◽  
pp. 97-103 ◽  
Author(s):  
C.M. Kao ◽  
F.C. Wu ◽  
K.F. Chen ◽  
T.F. Lin ◽  
Y.E. Yen ◽  
...  

The Kaoping River Basin, located in southern Taiwan, flows through approximately 171 km and drains towards the South Taiwan Strait. It is the largest and the most intensively used river basin in Taiwan. Based on the results from the pollutant sources investigation and water quality analysis, the main water pollution sources of the Kaoping River were livestock wastewater from hog farms, municipal wastewater, industrial wastewater, leachate from riverbank landfills, and non-point source (NPS) pollutants from agricultural areas in the upper catchment. Concern about the deteriorating condition of the river led the Government of Taiwan to amend the relevant legislation and strengthen the enforcement of the discharge regulations to effectively manage the river and control the pollution. The following remedial strategies have been taken to improve the river water quality since 2001: (1) hog ban in the upper catchment of the Kaoping River Basin, thus, 510 thousand hogs have been removed/relocated; (2) removal of riverbank landfills; (3) enforcement of the industrial wastewater discharge standards; (4) sewer system construction in five cities along the river corridor; (5) application of best management practices for NPS pollutant control; (6) application of natural wastewater treatment systems (e.g. land treatment, constructed wetland, overland flow, riverbank sedimentation/aeration pond) for domestic wastewater treatment in rural areas; and (7) construction of the watershed geographical information system (GIS) and real time water quality monitoring system to effectively monitor and manage the watershed. Recent water quality investigation results indicate that the biochemical oxygen demand (BOD) and nutrient loadings to the Kaoping River have been significantly reduced and the water quality has been improved after the implementation of the remedial strategies described above. Results and experience obtained from this study will be helpful in designing the watershed management strategies for other similar river basins.


2020 ◽  
Vol 66 (1) ◽  
pp. 12-19
Author(s):  
Surbhi Sinha ◽  
◽  
Vinay Kumar Rai ◽  

The evolution and development of a drainage network largely depends upon the surface topography of a landscape. Even topographic attributes such as overland flow, sub-surface flow, stream flow etc. are highly determined by the relief and slope aspects of the basin area. Topography influences evolution of landforms, soil development, vegetation growth, types of settlement, agricultural pattern etc. So it becomes very important to quantify different topographical parameters so that proper watershed management can be done. This work is an attempt to evaluate existing topography of study area using topographical sheets and SRTM DEM data. For calculation and analysis of data MS Excel is used while Geographical Information System (GIS) is used for mapping purpose. Present work provides better understanding of surface and relief aspects of landforms in Lower Barakar basin.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Gebreyesus Brhane Tesfahunegn ◽  
Lulseged Tamene ◽  
Paul L. G. Vlek

Even though scientific information on spatial distribution of hydrophysical parameters is critical for understanding erosion processes and designing suitable technologies, little is known in Geographical Information System (GIS) application in developing spatial hydrophysical data inputs and their application in Morgan-Morgan-Finney (MMF) erosion model. This study was aimed to derive spatial distribution of hydrophysical parameters and apply them in the Morgan-Morgan-Finney (MMF) model for estimating soil erosion in the Mai-Negus catchment, northern Ethiopia. Major data input for the model include climate, topography, land use, and soil data. This study demonstrated using MMF model that the rate of soil detachment varied from <20 t ha−1y−1to >170 t ha−1y−1, whereas the soil transport capacity of overland flow (TC) ranged from 5 t ha−1y−1to >42 t ha−1y−1. The average soil loss estimated by TC using MMF model at catchment level was 26 t ha−1y−1. In most parts of the catchment (>80%), the model predicted soil loss rates higher than the maximum tolerable rate (18 t ha−1y−1) estimated for Ethiopia. Hence, introducing appropriate interventions based on the erosion severity predicted by MMF model in the catchment is crucial for sustainable natural resources management.


2017 ◽  
Vol 102 ◽  
pp. 142-160 ◽  
Author(s):  
Dustin W. West ◽  
Ethan J. Kubatko ◽  
Colton J. Conroy ◽  
Mariah Yaufman ◽  
Dylan Wood

Sign in / Sign up

Export Citation Format

Share Document