decoupling approximation
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 1)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
Tilo Schwalger

AbstractNoise in spiking neurons is commonly modeled by a noisy input current or by generating output spikes stochastically with a voltage-dependent hazard rate (“escape noise”). While input noise lends itself to modeling biophysical noise processes, the phenomenological escape noise is mathematically more tractable. Using the level-crossing theory for differentiable Gaussian processes, we derive an approximate mapping between colored input noise and escape noise in leaky integrate-and-fire neurons. This mapping requires the first-passage-time (FPT) density of an overdamped Brownian particle driven by colored noise with respect to an arbitrarily moving boundary. Starting from the Wiener–Rice series for the FPT density, we apply the second-order decoupling approximation of Stratonovich to the case of moving boundaries and derive a simplified hazard-rate representation that is local in time and numerically efficient. This simplification requires the calculation of the non-stationary auto-correlation function of the level-crossing process: For exponentially correlated input noise (Ornstein–Uhlenbeck process), we obtain an exact formula for the zero-lag auto-correlation as a function of noise parameters, mean membrane potential and its speed, as well as an exponential approximation of the full auto-correlation function. The theory well predicts the FPT and interspike interval densities as well as the population activities obtained from simulations with colored input noise and time-dependent stimulus or boundary. The agreement with simulations is strongly enhanced across the sub- and suprathreshold firing regime compared to a first-order decoupling approximation that neglects correlations between level crossings. The second-order approximation also improves upon a previously proposed theory in the subthreshold regime. Depending on a simplicity-accuracy trade-off, all considered approximations represent useful mappings from colored input noise to escape noise, enabling progress in the theory of neuronal population dynamics.


2018 ◽  
Vol 20 (11) ◽  
pp. 113003 ◽  
Author(s):  
Nikola Simidjievski ◽  
Jovan Tanevski ◽  
Bernard Ženko ◽  
Zoran Levnajić ◽  
Ljupčo Todorovski ◽  
...  

2016 ◽  
Vol 49 (5) ◽  
pp. 1734-1739 ◽  
Author(s):  
Daniel G. Greene ◽  
Daniel V. Ferraro ◽  
Abraham M. Lenhoff ◽  
Norman J. Wagner

The decoupling approximation, proposed by Kotlarchyk & Chen [J. Chem. Phys. (1983), 79, 2461–2469], is a first-order correction to the experimentally determined apparent structure factor that is necessary because of concentration effects in polydisperse and/or nonspherical systems. While the approximation is considered accurate for spheres with low polydispersity (<10%), the corresponding limitations for nonspherical particles are unknown. The validity of this approximation is studied for monodisperse dispersions of hard ellipsoids of revolution with aspect ratios ranging from 0.333 to 3 and a guide for its accuracy is provided.


2015 ◽  
Vol 48 (4) ◽  
pp. 1172-1182 ◽  
Author(s):  
Andrew J. Senesi ◽  
Byeongdu Lee

Small-angle scattering formulae for crystalline assemblies of arbitrary particles are derived from powder diffraction theory using the decoupling approximation. To do so, the pseudo-lattice factor is defined, and methods to overcome the limitations of the decoupling approximation are investigated. Further, approximated equations are suggested for the diffuse scattering from various defects of the first kind due to non-ideal particles, including size polydispersity, orientational disorder and positional fluctuation about their ideal positions. Calculated curves using the formalism developed herein are compared with numerical simulations computed without any approximation. For a finite-sized assembly, the scattering from the whole domain of the assembly must also be included, and this is derived using the correlation function approach.


2010 ◽  
Vol 152-153 ◽  
pp. 116-120
Author(s):  
Zhao Xin Lu ◽  
Bao Hua Teng ◽  
Xin Yang

Utilizing the higher order decoupling approximation to the Fermi-type Green’s function, crossover properties of interaction parameters of an n-layer ferroelectric thin film from the ferroelectric-dominant phase diagram (FPD) to the paraelectric-dominant phase diagram (PPD) are investigated on the basis of the transverse Ising model. The curved surfaces for crossover values of interaction parameters of a thin film with certain layers are constructed in the three-dimensional parameter space. Because both the z-component <Sz> (the polarization) and the transverse component <Sx> of the spin are further included in the eigenfrequency, the results are in agreement with that of the effective-field theory with correlations to some extent. It shows that the higher order decoupling approximation diminishes the ferroelectric feature of a ferroelectric thin film compared with the usual mean-field approximation.


Author(s):  
Matthias Morzfeld ◽  
Nopdanai Ajavakom ◽  
Fai Ma

A common approximation in the analysis of non-classically damped systems is to ignore the off-diagonal elements of the modal damping matrix. This procedure is termed the decoupling approximation. It is generally believed that errors due to the decoupling approximation should be negligible if the modal damping matrix is diagonally dominant. In addition, the errors are expected to decrease as the modal damping matrix becomes more diagonally dominant. It is shown numerically in this paper that, over a finite range, errors due to the decoupling approximation can increase monotonically at any specified rate while the modal damping matrix becomes more diagonally dominant with its off-diagonal elements decreasing continuously in magnitude. These unexpected drifts in errors due to the decoupling approximation can be observed at any driving frequency. Small off-diagonal elements in the modal damping matrix may not be sufficient to ensure small errors due to the decoupling approximation. Error-criteria based solely upon diagonal dominance of the modal damping matrix cannot be accurate.


Sign in / Sign up

Export Citation Format

Share Document