intrinsic conductivity
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 16)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Wenxi Zhao ◽  
Xiaoqing Ma ◽  
Luchao Yue ◽  
Longcheng Zhang ◽  
Yongsong Luo ◽  
...  

Metal selenides have attracted great concern for high-efficiency sodium storage thanks to the remarkable advantages of physicochemical features and electrochemical activity. However, the enormous issues (e.g. poor intrinsic conductivity, severe...


2021 ◽  
Author(s):  
Fengjie Zhao ◽  
Marko S Chavez ◽  
Kyle L Naughton ◽  
Christina M Cole ◽  
Jeffrey A Gralnick ◽  
...  

Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces and measurements demonstrated tunable biofilm conduction dependent on pattern size. Controlling biofilm geometry also enabled us, for the first time, to quantify the intrinsic conductivity of living S. oneidensis biofilms and experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.


2021 ◽  
Author(s):  
Gun-Hee Lee ◽  
Ye RIm Lee ◽  
Hanul Kim ◽  
Do A Kwon ◽  
Hyeonji Kim ◽  
...  

Abstract Liquid metal (LM) is being regarded as the most feasible material for soft electronics owing to its distinct combination of high conductivity comparable to that of metals and exceptional deformability derived from its liquid state. However, the applicability of LM is still limited due to the difficulty of achieving its mechanical stability and intrinsic conductivity. Furthermore, reliable and rapid patterning of stable LM directly on various soft substrates at high-resolution remains a formidable challenge. In this work, meniscus-guided printing of ink containing polyelectrolyte-attached LM microgranular-particle (PaLMP) in an aqueous solvent to generate semi-solid-state LM is presented. PaLMP printed in the evaporative regime is mechanically stable, intrinsically conductive, and patternable down to 50 µm on various substrates. Demonstrations of the ultrastretchable (~500% strain) electrical circuit, customized e-skin, and zero-waste ECG sensor validate the simplicity, versatility, and reliability of this manufacturing strategy, enabling broad utility in the development of advanced soft electronics.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7422
Author(s):  
Min-Kyu Son

Upscaling of photoelectrode for a practical photoelectrochemical (PEC) water splitting system is still challenging because the PEC performance of large-scale photoelectrode is significantly low, compared to the lab scale photoelectrode. In an effort to overcome this challenge, sputtered gold (Au) and copper (Cu) grid lines were introduced to improve the PEC performance of large-scale cuprous oxide (Cu2O) photocathode in this work. It was demonstrated that Cu grid lines are more effective than Au grid lines to improve the PEC performance of large-scale Cu2O photocathode because its intrinsic conductivity and quality of grid lines are better than ones containing Au grid lines. As a result, the PEC performance of a 25-cm2 scaled Cu2O photocathode with Cu grid lines was almost double than one without grid lines, resulting in an improved charge transport in the large area substrate by Cu grid lines. Finally, a 50-cm2 scaled Cu2O photocathode with Cu grid lines was tested in an outdoor condition under natural sun. This is the first outdoor PEC demonstration of large-scale Cu2O photocathode with Cu grid lines, which gives insight into the development of efficient upscaled PEC photoelectrode.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012104
Author(s):  
A A Pavlov ◽  
A M Kamalov ◽  
M E Borisova ◽  
G V Greshnyakov ◽  
G V Vaganov

Abstract The work focuses on the study of the charge relaxation kinetics in composite materials based on polyethylene. Time dependences of the electretic potential differences for samples with different mass values of the filler, as well as dependences of conductivity from the mass percentage of the filler, were achieved. The conductivity curves were analyzed according to the modern theory of intrinsic conductivity.


2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Filippo Silveri ◽  
Flavio Della Pelle ◽  
Daniel Rojas ◽  
Dario Compagnone

Phytochemical products start to be employed to assist 2D nanomaterials exfoliation. However, a lack of studies regarding the molecules involved and their capacity to give rise to functional materials is evident. In this work, a novel green liquid-phase exfoliation strategy (LPE) is proposed, wherein a flavonoid namely catechin (CT) exclusively assists the exfoliation of bulk graphite in conductive water-soluble graphene nanoflakes (GF). Physicochemical and electrochemical methods have been employed to characterize the morphological, structural, and electrochemical features of the GF-CT. Surprisingly, the obtained GF-CT integrates well-defined electroactive quinoid adducts. The resulting few-layers graphene flakes intercalated with CT aromatic skeleton ensure strict electrical contact among graphene sheets, whereas the fully reversible quinoid electrochemistry (ΔE = 28 mV, Ip, a/Ip, c = ~1) is attributed to the residual catechol moieties, which work as an electrochemical mediator. The GF-CT intimate electrochemistry is generated directly during the LPE of graphite, not requiring any modification or electro-polymerization steps, resulting in stable (8 months) and reproducible material. The electrocatalytic activity has been proven towards hydrazine (HY) and β-nicotinamide adenine dinucleotide (NADH), a pollutant and a coenzyme, respectively. High sensitivity in extended linear ranges (HY: LOD = 0.1 µM, L.R. 0.5–150 µM; NADH: LOD = 0.6 µM, L.R. 2.5–200 µM) at low overpotential (+0.15 V) was obtained using amperometry, avoiding electrode-fouling. Improved performances, compared with graphite commercial electrodes and graphene exfoliated with a conventional surfactant, were obtained. The GF-CT was successfully used to perform the detection of HY and NADH (recoveries 94–107%, RSD ≤ 8%) in environmental and biological matrices, proving the material exploitability even in challenging analytical applications. On course studies aim to combine the intrinsic conductivity of the GF-CT with flexible substrates, in order to construct flexible electrodes/devices able to house GF-CT-exclusively composed conductive films. In our opinion, the proposed GF-CT elects itself as a cost-effective and sustainable material, particularly captivating in the (bio)sensoristics scenario.


2021 ◽  
Vol 21 (1) ◽  
pp. 3-20
Author(s):  
Aigul S. Istomina ◽  
◽  
Olga V. Bushkova ◽  

The third part of the review is devoted to polymer binders with electronic conductivity used to make composite electrodes for lithium electrochemical systems. Polymer semiconductors (“synthetic metals”), related polymers with additionally introduced functional groups, related copolymers and mixtures of polymers, as well as carbon chain polymers and copolymers with inсorporated polyaromatic fragments are considered. Such materials significantly improve electrical connectivity of the composite electrode and make it possible to eliminate or minimise the content of electrochemically inert conductive additives (carbon black, graphite powder), which positively influences on the specific capacity and cycling stability of the electrodes. Improving conditions of electronic transfer is especially important for the efficient use of active materials with extremely low intrinsic conductivity, such as Si, Li4Ti5O12, LiFePO4, etc. The final part of the review summarizes general principles of the targeted selection of a polymer binder.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 827
Author(s):  
Oladipo Folorunso ◽  
Yskandar Hamam ◽  
Rotimi Sadiku ◽  
Suprakas Sinha Ray

In this study, the electrical properties of graphene–polypyrrole (graphene-PPy) nanocomposites were thoroughly investigated. A numerical model, based on the Simmons and McCullough equations, in conjunction with the Monte Carlo simulation approach, was developed and used to analyze the effects of the thickness of the PPy, aspect ratio diameter of graphene nanorods, and graphene intrinsic conductivity on the transport of electrons in graphene–PPy–graphene regions. The tunneling resistance is a critical factor determining the transport of electrons in composite devices. The junction capacitance of the composite was predicted. A composite with a large insulation thickness led to a poor electrochemical electrode. The dependence of the electrical conductivity of the composite on the volume fraction of the filler was studied. The results of the developed model are consistent with the percolation theory and measurement results reported in literature. The formulations presented in this study can be used for optimization, prediction, and design of polymer composite electrical properties.


2020 ◽  
Vol 234 (1) ◽  
pp. 1-10
Author(s):  
Volker Ender ◽  
Jens Weber

AbstractThe present paper deals with the minima of conductivity in aqueous solutions, which occur due to the hydrolysis reaction with added bases. The minima show lower conductivities than the intrinsic conductivity of pure water. The minimum is a function of the molar conductivity of the added ions. There exists a limiting condition of <75.825 ⋅ 10−4 S ⋅ m2 ⋅ mol−1 for the occurrence of a minimum in the real (positive) concentration area. Values higher than 75.825 ⋅ 10−4 S ⋅ m2 ⋅ mol−1 lead to minimas in the virtual (negative) concentration area. Connecting all the minima, a curve with a maximum is observed. This point is given by 75.825 ⋅ 10−4 S ⋅ m2 ⋅ mol−1 and the intrinsic conductivity of pure water. The effect is independent of whether the added substances come from a strong or weak base. So far, the phenomenon should not influence measurements of conductivity under usual circumstances, but might be more of academic interest. Interestingly, we found that the effect for Rubidium and Cesium ions is different compared to other alkali metal ions. No minimum conductivity is predicted for these ions.


Sign in / Sign up

Export Citation Format

Share Document