Design Approach for Flexural Strength of Reinforced Ultra-High-Performance Concrete Members Considering Size Effect

2022 ◽  
Vol 119 (1) ◽  
Author(s):  
Fei Peng ◽  
Weijian Yi ◽  
Zhi Fang
PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Chang-Sik Choi

Flexural strength evaluation models for steel fiber reinforced ultra high strength concrete were suggested and evaluated with test results. Suggested flexural strength models were composed of compression stress blocks and tension stress blocks. Rectangular stress block, triangular stress block, and real distribution shape of stress were used on compression side. Under tension, rectangular stress block distributed to whole area of tension side and partial area of tension side was used. The last model for tension side is realistic stress distribution. All these models were verified with test result which was carried out in this study. Test was conducted by four-point loading with 2,000 kN actuator for slender beam specimen. Additional verifications were carried out with previous researches on flexural strength of steel fiber reinforced concrete or ultra high strength concrete. Total of 21 test specimens were evaluated. As a result of comparison for flexural strength of section, neutral axis depth at ultimate state, models with triangular compression stress block, and strain-softening type tension stress block can be used as exact solution for ultra high performance concrete. For the conservative and convenient design of section, modified rectangular stress block model can be used with strain softening type tension stress block.


2010 ◽  
Vol 452-453 ◽  
pp. 717-720 ◽  
Author(s):  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Jung Jun Park ◽  
Kyung Taek Koh ◽  
Sung Wook Kim

This paper intends to examine the effects if the length and shape of steel fibers on the mechanical characteristics of ultra-high performance concrete (UHPC). Accordingly, the length (l) of the steel fibers with diameter (d) of 0.2 mm is varied as 13 mm, 16.3 mm and 19.5 mm and their corresponding aspect ratios (l/d) are 65, 82 and 98. Straight and wave-shaped fibers are adopted to manufacture UHPC. Thereafter, the effects of the aspect ratio and characteristics of the wave-shape of the steel fibers on the strength characteristics of UHPC are examined through compressive and flexural strength tests. The results showed small differences in the workability and compressive behavior but revealed that changing the length of the fibers and increasing the aspect ratio are improving the flexural behavior of UHPC. Specifically, the flexural strength was enhanced by 25% and the flexural toughness by 30%. Compared to rectilinear fibers, the adoption of wave-shaped fibers is seen to degrade the flexural behavior regardless of the aspect ratio. Consequently, using straight steel fibers and adopting larger aspect ratio seems advisable to improve the toughness of UHPC.


2013 ◽  
Vol 405-408 ◽  
pp. 2847-2850
Author(s):  
Wu Jian Long ◽  
Wei Lun Wang ◽  
Qi Ling Luo ◽  
Bi Qin Dong

In order to understand the influence of mixture parameters on ultra-high strength self-consolidating concrete (UHS-SCC) behaviour, an experimental design was carried out in this investigation. In total, 19 SCC mixtures were prepared to determine several key responses that affect the slump flow and compressive strength of UHS-SCC. The statistical models derived from the factorial design approach can be used to quantify the effect of mixture parameters and their coupled effects on fresh and mechanical properties of SCC.


2009 ◽  
Vol 417-418 ◽  
pp. 581-584 ◽  
Author(s):  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Jung Jun Park ◽  
Gyung Taek Koh

Apart from its high compressive, tensile and flexural strengths reaching approximately 200MPa, 15MPa and 35MPa, respectively, Ultra High Performance Concrete (UHPC) is characterized by its high resistance against degrading factors that can delay their penetration and diffusion speeds down to 1/20 to maximum 1/10,000 compared to ordinary concrete. UHPC also exhibits self-compaction properties with a slump flow of about 220mm. Furthermore, the most remarkable feature of UHPC is the improvement of its flexural strength and toughness through the admixing of steel fiber. Accordingly, this study evaluates the effects of the placement method on the flexural performance of UHPC. As a result, the flexural strength of UHPC appears to be extremely dependent on the placement method with variation of the maximum flexural strength up to 2 to 3 times while poor influence is observed on the initial crack strength.


Sign in / Sign up

Export Citation Format

Share Document