Use of Micro-Gravity Sensors for External Fluid Level Monitoring in Waste and Nuclear Related Applications

Author(s):  
Jeff Ridgway ◽  
Bryant Slater

Abstract There are a number of applications in nuclear energy and hazardous waste disposal that require monitoring of fluids under extreme environments, including high levels of temperature, pressure, toxicity and radioactivity. Many of these applications will benefit from a monitoring technique that is external and non-invasive. Currently the sensors used are invasive, must reside inside the pressurized vessels and must penetrate the vessel walls, which can create a weakness in the vessel. Additionally, instruments that are used inside such containers must be exceptionally hardened to the environment. Information Systems Laboratories (ISL) has developed an external mass (gravimetric) measuring technique for monitoring nuclear coolant in Small Modular Reactors (SMRs), which will also work for measuring fluid levels in waste tanks, that avoids the problems inherent in invasive sensors. It utilizes a COTS gravitational sensor of unprecedented accuracy, leveraged via proper sensor placement geometry, to detect fluid changes of small amplitude from an outside position, obviating the need to penetrate the vessel. The technique is called Gravisense™. ISL has proven via simulation and experiment that this concept can be usefully applied to monitoring fluid levels in both nuclear reactors and large waste tanks. Numerical simulation algorithms were developed to calculate the gravity effect of small changes in water level, which were verified by experiments at the NIST Physical Simulator facility at the Oregon State University. The measured ultra-low noise levels of the superconducting gravimeter type which utilizes a Niobium sphere suspended in a magnetic field to attain its phenomenal accuracy, demonstrated that fluid levels in SMRs can be measured at least to within 3 cm. Furthermore, the method can distinguish between a contained leak (from reactor to containment vessel) from an external leak (from reactor to outside of containment). Additionally, simulations of waste canisters that hold spent fuel rods show that the fluid level measuring accuracy can potentially do better than 1 cm accuracy by measuring from below the vessel, and judicious placement of sensors on top of large waste tanks can potentially achieve a very impressive 2 mm measurement accuracy. These encouraging results prove that the Gravisense™ technique for fluid determination can be very useful in nuclear energy generation, testing, and research, as well as in waste monitoring situations that are difficult to monitor via traditional sensing technology. We believe that the next step should be to test the technique on canisters of the type that are currently storing waste in various DOE locations.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1550
Author(s):  
Dominic Greiffenberg ◽  
Marie Andrä ◽  
Rebecca Barten ◽  
Anna Bergamaschi ◽  
Martin Brückner ◽  
...  

Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e− ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called “crater effect” which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the “crater effect” is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the “crater effect” on the detector operation.


Activity of the plant requires a great deal of work and human asset and requires a ton of diligent work and persistence as the individual needs to take note of every single an incentive at various occasions by taking readings physically. With the advancement of Industrial Automation, fluid level control framework has been generally utilized in different fields. In this paper, in light of PLC a control framework is set up by PID calculation and this control framework can alter two diverse fluid levels consequently. On the off chance that there are two distinct kinds of fluids with various densities in an equivalent tank and so as to isolate those two fluids, Level control framework dependent on SCADA and PLC is actualized. This framework satisfies splendidly the need of various fluid level control framework in industry, and it brings advantageous and exact for controlling. The proposed framework gives the fluid Level control, with the assistance of Programmable Logic Controllesr (PLCs), and Supervisory Control and Data Acquisition (SCADA).


2006 ◽  
Vol 985 ◽  
Author(s):  
James Bresee

AbstractIn the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper.


Author(s):  
Jeffrey A. Webster ◽  
Alexander Hagen ◽  
Brian C. Archambault ◽  
Nicholas Hume ◽  
Rusi Taleyarkhan

A novel, Centrifugally Tensioned Metastable Fluid Detector (CTMFD) sensor technology has been developed over the last decade to demonstrate high selective sensitivity and detection efficiency to various forms of radiation for wide-ranging conditions (e.g., power level, safeguards, security, and health physics) relevant to the nuclear energy industry. The CTMFD operates by tensioning a liquid with centrifugal force to weaken the bonds in the liquid to the point whereby even a femto-scale nuclear particle interactions can break the fluid and cause a detectable vaporization cascade. The operating principle has only peripheral similarity to the superheated bubble chamber based superheated droplet detectors (SDDs); instead, CTMFDs utilize mechanical “tension pressure” instead of thermal superheat offering a lot of practical advantages. CTMFDs have been used to detect a variety of alpha and neutron emitting sources in near real-time. The CTMFD is selectively blind to gamma photons and betas allowing for detection of alphas and neutrons in extreme gamma/beta background environments such as spent fuel reprocessing plants or under full power conditions within an operating nuclear reactor itself. The selective sensitivity allows for differentiation between alpha emitters including the isotopes of Plutonium. Mixtures of Plutonium isotopes have been measured in ratios of 1:1, 2:1, and 3:1 Pu-238:Pu-239 with successful differentiation. Due to the lack of gamma-beta background interference, the CTMFD’s LLD can be effectively reduced to zero and hence, is inherently more sensitive than scintillation based alpha spectrometers or SDDs and has been proven capable to detect below femtogram quantities of Plutonium-238. Plutonium is also easily distinguishable from Neptunium making it easy to measure the Plutonium concentration in the NPEX stream of a UREX reprocessing facility. The CTMFD has been calibrated for alphas from Americium (5.5 MeV) and Curium (∼6 MeV) as well. The CTMFD has furthermore, recently also been used to detect spontaneous and induced fission events which can be differentiated from alpha decay allowing for detection of fissionable material in a mixture of isotopes. This paper discusses these transformational developments which are also being entered for real-world commercial use.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Maria Avramova ◽  
Diana Cuervo

Over the last few years, the Pennsylvania State University (PSU) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has prepared, organized, conducted, and summarized two international benchmarks based on the NUPEC data—the OECD/NRC Full-Size Fine-Mesh Bundle Test (BFBT) Benchmark and the OECD/NRC PWR Sub-Channel and Bundle Test (PSBT) Benchmark. The benchmarks’ activities have been conducted in cooperation with the Nuclear Energy Agency/Organization for Economic Co-operation and Development (NEA/OECD) and the Japan Nuclear Energy Safety (JNES) Organization. This paper presents an application of the joint Penn State University/Technical University of Madrid (UPM) version of the well-known sub-channel code COBRA-TF (Coolant Boiling in Rod Array-Two Fluid), namely, CTF, to the steady state critical power and departure from nucleate boiling (DNB) exercises of the OECD/NRC BFBT and PSBT benchmarks. The goal is two-fold: firstly, to assess these models and to examine their strengths and weaknesses; and secondly, to identify the areas for improvement.


2006 ◽  
Vol 82 (2) ◽  
pp. 211-218 ◽  
Author(s):  
David L Evans ◽  
Scott D Roberts ◽  
Robert C Parker

LiDAR (Light Detection and Ranging) is a remote sensing technology with strong application potential in forest resource management. It provides high measurement precision that can be used for tree and stand measurements. Although LiDAR has not been used widely as an operational measurement tool, there is a significant body of research and a number of projects at Mississippi State University (MSU) that illustrate the potential for this technology to be incorporated into operational forest assessments. This paper provides basic background on the capabilities of LiDAR in a forest measurement context that illustrates specific examples of LiDAR use including: 1) individual tree assessments, 2) a forest inventory protocol currently being operationally tested, 3) forest structure analysis, and 4) forest typing. Key words: LiDAR, remote sensing, tree identification, tree measurements, forest inventory, forest types


1982 ◽  
Vol 3 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Robert P. Sandoval ◽  
John P. Weber ◽  
George J. Newton

Author(s):  
Samuel Brinton ◽  
Akira Tokuhiro

According to current forecasts, nuclear power plant construction and nuclear-generated electricity production is projected to increase in the next half-century. This is likely due to the fact that nuclear energy is an ‘environmental alternative’ to fossil fuel plants that emit greenhouse gases (GHG). Nuclear power also has a much higher energy density output than other alternative energy sources such as solar, wind, and biomass energies. There is also growing consensus that processing of low- and high-level waste, LLW and HLW respectively, is a political issue rather than a technical challenge. Prudent implementation of a closed fuel cycle not only curbs build-up of GHGs, but can equally mitigate the need to store nuclear used fuel. The Global Nuclear Energy Partnership (GNEP) is promoting gradual integration of fuel reprocessing, and deployment of fast reactors (FRs) into the global fleet for long-term uranium resource usage. The use of mixed oxide (MOX) fuel burning Light Water Reactors (LWR) has also been suggested by fuel cycle researchers. This study concentrated on modeling the construction and decommissioning rates of six major facilities comprising the nuclear fuel cycle, as follows: (1) current LWRs decommissioned at 60-years service life, (2) new LWRs burning MOX fuel, (3) new (Gen’ III+) LWRs to replace units and/or be added to the fleet, (4) new FRs to be added to the fleet, (5) new reprocessing and MOX fuel fabrication facilities and (6) new LWR fuel fabrication facilities. Our initial work [1] focused on modeling the construction and decommissioning rates of reactors to be deployed. This is being followed with a ‘mass flow model’, starting from uranium ore and following it to spent forms. The visual dynamic modeling program Vensim was used to create a system of equations and variables to track the mass flows from enrichment, fabrication, burn-up, and the back-end of the fuel cycle. Sensible construction and deployment rates were benchmarked against recent reports and then plausible scenarios considered parametrically. The timeline starts in 2007 and extends in a preliminary model to 2057; a further mass flow model scenario continues until 2107. The scenarios considered provide estimates of the uranium ore requirements, quantities of LLW and HLW production, and waste storage volume needs. The results of this study suggest the number of reprocessing facilities necessary to stabilize and/or reduce recently reported levels of spent fuel inventory. Preliminary results indicate that the entire national spent fuel inventory produced over the next ∼50 years can be reprocessed by a reprocessing plant construction rate of less than 0.07 plants/year (small capacity) or less than 0.05 plants /year (large capacity). Any larger construction rate could reduce the spent fuel inventory destined for storage. These and additional results will be presented.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kai Li ◽  
Libo Qian ◽  
Xiaojing Li ◽  
Yu Ma ◽  
Wenzhong Zhou

Ceramic material is one of the essential materials used in reactors. Beryllium oxide ceramics have good high-temperature radiation stability, high density, high strength, and thermal conductivity at high temperatures, and the price of beryllium oxide is relatively moderate. This makes it more suitable for use as a reflector, moderator, and dispersion phase fuel matrix in a reactor. In recent years, beryllium oxide has attracted widespread attention due to its high hardness, high resistivity, high thermal conductivity, high melting point, and high radiation resistance. Because of its excellent mechanical properties, beryllium oxide materials also have a long history in the field of nuclear energy. Reactor extreme environments have become a significant challenge for optimizing reactor operation and safety performance. The utilization of beryllium oxide can significantly alleviate extreme reactor environments. According to research, the coupling of beryllium oxide material can effectively improve nuclear fuels' thermal conductivity, such as uranium dioxide. Beryllium oxide also has good radiation resistance and neutron scattering properties, which increases its applications in nuclear energy. The article comprehensively reviews the BeO utilization approaches in reactors to improve extreme reactor environments for current reactor operation and future reactor design optimization.


Sign in / Sign up

Export Citation Format

Share Document