Research on the integrated manipulator of point cloud measurement and precise cutting for waste nuclear tank

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ruolong Qi ◽  
Wenfeng Liang

Purpose Nuclear waste tanks need to be cut into pieces before they can be safely disposed of, but the cutting process produces a large amount of aerosols with radiation, which is very harmful to the health of the operator. The purpose of this paper is to establish an intelligent strategy for an integrated robot designed for measurement and cutting, which can accurately identify and cut unknown nuclear waste tanks and realize autonomous precise processing. Design/methodology/approach A robot system integrating point cloud measurement and plasma cutting is designed in this paper. First, accurate calibration methods for the robot, tool and hand-eye system are established. Second, for eliminating the extremely scattered point cloud caused by metal surface refraction, an omnidirectional octree data structure with 26 vectors is proposed to extract the point cloud model more accurately. Then, a minimum bounding box is calculated for limiting the local area to be cut, the local three-dimensional shape of the nuclear tank is fitted within the bounding box, in which the cutting trajectories and normal vectors are planned accurately. Findings The cutting precision is verified by changing the tool into a dial indicator in the simulation and the experiment process. The octree data structure with omnidirectional pointing vectors can effectively improve the filtering accuracy of the scattered point cloud. The point cloud filter algorithm combined with the structure calibration methods for the integrated measurement and processing system can ensure the final machining accuracy of the robot. Originality/value Aiming at the problems of large measurement noise interference, complex transformations between coordinate systems and difficult accuracy guarantee, this paper proposes structure calibration, point cloud filtering and point cloud-based planning algorithm, which can greatly improve the reliability and accuracy of the system. Simulation and experiment verify the final cutting accuracy of the whole system.

Author(s):  
Shigang Wang ◽  
Shuai Peng ◽  
Jiawen He

Due to the point cloud of oral scan denture has a large amount of data and redundant points. A point cloud simplification algorithm based on feature preserving is proposed to solve the problem that the feature preserving is incomplete when processing point cloud data and cavities occur in relatively flat regions. Firstly, the algorithm uses kd-tree to construct the point cloud spatial topological to search the k-Neighborhood of the sampling point. On the basis of that to calculate the curvature of each point, the angle between the normal vector, the distance from the point to the neighborhood centroid, as well as the standard deviation and the average distance from the point to the neighborhood on this basis, therefore, the detailed features of point cloud can be extracted by multi-feature extraction and threshold determination. For the non-characteristic region, the non-characteristic point cloud is spatially divided through Octree to obtain the K-value of K-means clustering algorithm and the initial clustering center point. The simplified results of non-characteristic regions are obtained after further subdivision. Finally, the extracted detail features and the reduced result of non-featured region will be merged to obtain the final simplification result. The experimental results show that the algorithm can retain the characteristic information of point cloud model better, and effectively avoid the phenomenon of holes in the simplification process. The simplified results have better smoothness, simplicity and precision, and are of high practical value.


Author(s):  
C. Altuntas

<p><strong>Abstract.</strong> Image based dense point cloud creation is easy and low-cost application for three dimensional digitization of small and large scale objects and surfaces. It is especially attractive method for cultural heritage documentation. Reprojection error on conjugate keypoints indicates accuracy of the model and keypoint localisation in this method. In addition, sequential registration of the images from large scale historical buildings creates big cumulative registration error. Thus, accuracy of the model should be increased with the control points or loop close imaging. The registration of point point cloud model into the georeference system is performed using control points. In this study historical Sultan Selim Mosque that was built in sixteen century by Great Architect Sinan was modelled via photogrammetric dense point cloud. The reprojection error and number of keypoints were evaluated for different base/length ratio. In addition, georeferencing accuracy was evaluated with many configuration of control points with loop and without loop closure imaging.</p>


Author(s):  
L. Zhang ◽  
P. van Oosterom ◽  
H. Liu

Abstract. Point clouds have become one of the most popular sources of data in geospatial fields due to their availability and flexibility. However, because of the large amount of data and the limited resources of mobile devices, the use of point clouds in mobile Augmented Reality applications is still quite limited. Many current mobile AR applications of point clouds lack fluent interactions with users. In our paper, a cLoD (continuous level-of-detail) method is introduced to filter the number of points to be rendered considerably, together with an adaptive point size rendering strategy, thus improve the rendering performance and remove visual artifacts of mobile AR point cloud applications. Our method uses a cLoD model that has an ideal distribution over LoDs, with which can remove unnecessary points without sudden changes in density as present in the commonly used discrete level-of-detail approaches. Besides, camera position, orientation and distance from the camera to point cloud model is taken into consideration as well. With our method, good interactive visualization of point clouds can be realized in the mobile AR environment, with both nice visual quality and proper resource consumption.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5373 ◽  
Author(s):  
Jingxin Su ◽  
Ryuji Miyazaki ◽  
Toru Tamaki ◽  
Kazufumi Kaneda

As mobile mapping systems become a mature technology, there are many applications for the process of the measured data. One interesting application is the use of driving simulators that can be used to analyze the data of tire vibration or vehicle simulations. In previous research, we presented our proposed method that can create a precise three-dimensional point cloud model of road surface regions and trajectory points. Our data sets were obtained by a vehicle-mounted mobile mapping system (MMS). The collected data were converted into point cloud data and color images. In this paper, we utilize the previous results as input data and present a solution that can generate an elevation grid for building an OpenCRG model. The OpenCRG project was originally developed to describe road surface elevation data, and also defined an open file format. As it can be difficult to generate a regular grid from point cloud directly, the road surface is first divided into straight lines, circular arcs, and and clothoids. Secondly, a non-regular grid which contains the elevation of road surface points is created for each road surface segment. Then, a regular grid is generated by accurately interpolating the elevation values from the non-regular grid. Finally, the curved regular grid (CRG) model files are created based on the above procedures, and can be visualized by OpenCRG tools. The experimental results on real-world data show that the proposed approach provided a very-high-resolution road surface elevation model.


2018 ◽  
Vol 232 ◽  
pp. 02045
Author(s):  
Ning Zhang ◽  
YongJia Zhao

Nowadays, more and more applications require precise and quickly 3D recognition, such as augmented reality and robot navigation. In recent years, model-based methods can get accurate object or scene recognition, but it takes a lot of time to reconstruct the model. Therefore, we propose a fast 3D reconstruction method based on ordered images for robust and accurate 3D recognition. The proposed algorithm consists of two parts, the offline processing stage, and the online processing stage. First, in the offline processing stage, the sparse point cloud model of the scene or object is reconstructed based on the sequential images, optimized using the BA algorithm based on the local correlation frame, and then the local descriptor of the resulting model points is stored. Secondly, in the online processing stage, for each image frame of the camera video, a matching relationship between the stored point cloud and the 2D feature points on the image frame is established, based on which the pose of the camera can be solved accurately.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 28 ◽  
Author(s):  
Chao Wang

In order to improve the accuracy of semantic model intrinsic detection, a skeleton-based high-level semantic model intrinsic self-symmetry detection method is proposed. The semantic analysis of the model set is realized by the uniform segmentation of the model within the same style, the component correspondence of the model between different styles, and the shape content clustering. Based on the results of clustering analysis, for a given three-dimensional (3D) point cloud model, according to the curve skeleton, the skeleton point pairs reflecting the symmetry between the model surface points are obtained by the election method, and the symmetry is extended to the model surface vertices according to these skeleton point pairs. With the help of skeleton, the symmetry of the point cloud model is obtained, and then the symmetry region of point cloud model is obtained by the symmetric correspondence matrix and spectrum method, so as to realize the intrinsic symmetry detection of the model. The experimental results show that the proposed method has the advantages of less time, high accuracy, and high reliability.


2019 ◽  
Vol 7 (3) ◽  
pp. 120-132
Author(s):  
Kashish Gupta ◽  
Bara Jamal Emran ◽  
Homayoun Najjaran

Purpose The purpose of this paper is to facilitate autonomous landing of a multi-rotor unmanned aerial vehicle (UAV) on a moving/tilting platform using a robust vision-based approach. Design/methodology/approach Autonomous landing of a multi-rotor UAV on a moving or tilting platform of unknown orientation in a GPS-denied and vision-compromised environment presents a challenge to common autopilot systems. The paper proposes a robust visual data processing system based on targets’ Oriented FAST and Rotated BRIEF features to estimate the UAV’s three-dimensional pose in real time. Findings The system is able to visually locate and identify the unique landing platform based on a cooperative marker with an error rate of 1° or less for all roll, pitch and yaw angles. Practical implications The proposed vision-based system aims at on-board use and increased reliability without a significant change to the computational load of the UAV. Originality/value The simplicity of the training procedure gives the process the flexibility needed to use a marker of any unknown/irregular shape or dimension. The process can be easily tweaked to respond to different cooperative markers. The on-board computationally inexpensive process can be added to off-the-shelf autopilots.


2017 ◽  
Vol 5 (29) ◽  
Author(s):  
Vinícius da Silva Duarte ◽  
Laura Treu ◽  
Stefano Campanaro ◽  
Roberto Sousa Dias ◽  
Cynthia Canedo da Silva ◽  
...  

ABSTRACT We present here the complete genome sequence of Trueperella pyogenes UFV1. The 2.3-Mbp genome contains an extremely interesting AI-2 transporter and processing system related to the quorum-sensing signal response. This specific feature is described in this species for the first time and might be responsible for a new pathogenic behavior.


Author(s):  
Kensuke Harada ◽  
Weiwei Wan ◽  
Tokuo Tsuji ◽  
Kohei Kikuchi ◽  
Kazuyuki Nagata ◽  
...  

Purpose This paper aims to automate the picking task needed in robotic assembly. Parts supplied to an assembly process are usually randomly staked in a box. If randomized bin-picking is introduced to a production process, we do not need any part-feeding machines or human workers to once arrange the objects to be picked by a robot. The authors introduce a learning-based method for randomized bin-picking. Design/methodology/approach The authors combine the learning-based approach on randomized bin-picking (Harada et al., 2014b) with iterative visual recognition (Harada et al., 2016a) and show additional experimental results. For learning, we use random forest explicitly considering the contact between a finger and a neighboring object. The iterative visual recognition method iteratively captures point cloud to obtain more complete point cloud of piled object by using 3D depth sensor attached at the wrist. Findings Compared with the authors’ previous research (Harada et al., 2014b) (Harada et al., 2016a), their new finding is as follows: by using random forest, the number of training data becomes extremely small. By adding penalty to occluded area, the learning-based method predicts the success after point cloud with less occluded area. We analyze the calculation time of the iterative visual recognition. We furthermore make clear the cases where a finger contacts neighboring objects. Originality/value The originality exists in the part where the authors combined the learning-based approach with the iterative visual recognition and supplied additional experimental results. After obtaining the complete point cloud of the piled object, prediction becomes effective.


Sign in / Sign up

Export Citation Format

Share Document