scholarly journals Do Differences in Latitudinal Distributions of Species and Organelle Haplotypes Reflect Thermal Reaction Norms Within the Emiliania/Gephyrocapsa Complex?

2021 ◽  
Vol 8 ◽  
Author(s):  
Peter von Dassow ◽  
Paula Valentina Muñoz Farías ◽  
Sarah Pinon ◽  
Esther Velasco-Senovilla ◽  
Simon Anguita-Salinas

The cosmopolitan phytoplankter Emiliania huxleyi contrasts with its closest relatives that are restricted to narrower latitudinal bands, making it interesting for exploring how alternative outcomes in phytoplankton range distributions arise. Mitochondrial and chloroplast haplogroups within E. huxleyi are shared with their closest relatives: Some E. huxleyi share organelle haplogroups with Gephyrocapsa parvula and G. ericsonii which inhabit lower latitudes, while other E. huxleyi share organelle haplogroups with G. muellerae, which inhabit high latitudes. We investigated whether the phylogeny of E. huxleyi organelles reflects environmental gradients, focusing on the Southeast Pacific where the different haplogroups and species co-occur. There was a high congruence between mitochondrial and chloroplast haplogroups within E. huxleyi. Haplogroup II of E. huxleyi is negatively associated with cooler less saline waters, compared to haplogroup I, both when analyzed globally and across temporal variability at the small special scale of a center of coastal upwelling at 30° S. A new mitochondrial haplogroup Ib detected in coastal Chile was associated with warmer waters. In an experiment focused on inter-species comparisons, laboratory-determined thermal reaction norms were consistent with latitudinal/thermal distributions of species, with G. oceanica exhibiting warm thermal optima and tolerance and G. muellerae exhibiting cooler thermal optima and tolerances. Emiliania huxleyi haplogroups I and II tended to exhibit a wider thermal niche compared to the other Gephyrocapsa, but no differences among haplogroups within E. huxleyi were found. A second experiment, controlling for local adaptation and time in culture, found a significant difference between E. huxleyi haplogroups. The difference between I and II was of the expected sign, but not the difference between I and Ib. The differences were small (≤1°C) compared to differences reported previously within E. huxleyi by local adaptation and even in-culture evolution. Haplogroup Ib showed a narrower thermal niche. The cosmopolitanism of E. huxleyi might result from both wide-spread generalist phenotypes and specialist phenotypes, as well as a capacity for local adaptation. Thermal reaction norm differences can well explain the species distributions but poorly explain distributions among mitochondrial haplogroups within E. huxleyi. Perhaps organelle haplogroup distributions reflect historical rather than selective processes.

2010 ◽  
Vol 278 (1703) ◽  
pp. 313-320 ◽  
Author(s):  
David Berger ◽  
Magne Friberg ◽  
Karl Gotthard

Genetic trade-offs such as between generalist–specialist strategies can be masked by changes in compensatory processes involving energy allocation and acquisition which regulation depends on the state of the individual and its ecological surroundings. Failure to account for such state dependence may thus lead to misconceptions about the trade-off structure and nature of constraints governing reaction norm evolution. Using three closely related butterflies, we first show that foraging behaviours differ between species and change remarkably throughout ontogeny causing corresponding differences in the thermal niches experienced by the foraging larvae. We further predicted that thermal reaction norms for larval growth rate would show state-dependent variation throughout development as a result of selection for optimizing feeding strategies in the respective foraging niches of young and old larvae. We found substantial developmental plasticity in reaction norms that was species-specific and reflected the different ontogenetic niche shifts. Any conclusions regarding constraints on performance curves or species-differentiation in thermal physiology depend on when reaction norms were measured. This demonstrates that standardized estimates at single points in development, or in general, allow variation in only one ecological dimension, may sometimes provide incomplete information on reaction norm constraints.


2010 ◽  
Vol 7 (10) ◽  
pp. 3215-3237 ◽  
Author(s):  
I. Masotti ◽  
S. Belviso ◽  
S. Alvain ◽  
J. E. Johnson ◽  
T. S. Bates ◽  
...  

Abstract. Dimethylsulfoniopropionate (DMSP) is produced in surface seawater by phytoplankton. Phytoplankton culture experiments have shown that nanoeucaryotes (NANO) display much higher mean DMSP-to-Carbon or DMSP-to-Chlorophyll (Chl) ratios than Prochlorococcus (PRO), Synechococcus (SYN) or diatoms (DIAT). Moreover, the DMSP-lyase activity of algae which cleaves DMSP into dimethylsulfide (DMS) is even more group specific than DMSP itself. Ship-based observations have shown at limited spatial scales, that sea surface DMS-to-Chl ratios (DMS:Chl) are dependent on the composition of phytoplankton groups. Here we use satellite remote sensing of Chl (from SeaWiFS) and of Phytoplankton Group Dominance (PGD from PHYSAT) with ship-based sea surface DMS concentrations (8 cruises in total) to assess this dependence on an unprecedented spatial scale. PHYSAT provides PGD (either NANO, PRO, SYN, DIAT, Phaeocystis (PHAEO) or coccolithophores (COC)) in each satellite pixel (1/4° horizontal resolution). While there are identification errors in the PHYSAT method, it is important to note that these errors are lowest for NANO PGD which we typify by high DMSP:Chl. In summer, in the Indian sector of the Southern Ocean, we find that mean DMS:Chl associated with NANO + PHAEO and PRO + SYN + DIAT are 13.6±8.4 mmol g−1 (n=34) and 7.3±4.8 mmol g−1 (n=24), respectively. That is a statistically significant difference (P<0.001) that is consistent with NANO and PHAEO being relatively high DMSP producers. However, in the western North Atlantic between 40° N and 60° N, we find no significant difference between the same PGD. This is most likely because coccolithophores account for the non-dominant part of the summer phytoplankton assemblages. Meridional distributions at 22° W in the Atlantic, and 95° W and 110° W in the Pacific, both show a marked drop in DMS:Chl near the equator, down to few mmol g−1, yet the basins exhibit different PGD (NANO in the Atlantic, PRO and SYN in the Pacific). In tropical and subtropical Atlantic and Pacific waters away from the equatorial and coastal upwelling, mean DMS:Chl associated with high and low DMSP producers are statistically significantly different, but the difference is opposite of that expected from culture experiments. Hence, in a majority of cases PGD is not of primary importance in controlling DMS:Chl variations. We therefore conclude that water-leaving radiance spectra obtained simultaneously from ocean color sensor measurements of Chl concentrations and dominant phytoplankton groups can not be used to predict global fields of DMS.


2013 ◽  
Vol 26 (5) ◽  
pp. 1108-1116 ◽  
Author(s):  
J. Moiroux ◽  
E. Delava ◽  
F. Fleury ◽  
J. van Baaren

2020 ◽  
Vol 117 (49) ◽  
pp. 31249-31258
Author(s):  
Maria del Mar Delgado ◽  
Tomas Roslin ◽  
Gleb Tikhonov ◽  
Evgeniy Meyke ◽  
Coong Lo ◽  
...  

For species to stay temporally tuned to their environment, they use cues such as the accumulation of degree-days. The relationships between the timing of a phenological event in a population and its environmental cue can be described by a population-level reaction norm. Variation in reaction norms along environmental gradients may either intensify the environmental effects on timing (cogradient variation) or attenuate the effects (countergradient variation). To resolve spatial and seasonal variation in species’ response, we use a unique dataset of 91 taxa and 178 phenological events observed across a network of 472 monitoring sites, spread across the nations of the former Soviet Union. We show that compared to local rates of advancement of phenological events with the advancement of temperature-related cues (i.e., variation within site over years), spatial variation in reaction norms tend to accentuate responses in spring (cogradient variation) and attenuate them in autumn (countergradient variation). As a result, among-population variation in the timing of events is greater in spring and less in autumn than if all populations followed the same reaction norm regardless of location. Despite such signs of local adaptation, overall phenotypic plasticity was not sufficient for phenological events to keep exact pace with their cues—the earlier the year, the more did the timing of the phenological event lag behind the timing of the cue. Overall, these patterns suggest that differences in the spatial versus temporal reaction norms will affect species’ response to climate change in opposite ways in spring and autumn.


1998 ◽  
Vol 76 (5) ◽  
pp. 795-804 ◽  
Author(s):  
Benedikt R Schmidt ◽  
Hansjürg Hotz ◽  
Bradley R Anholt ◽  
Gaston-Denis Guex ◽  
Raymond D Semlitsch

We tested for environmental factors that may lead to balancing selection and to the maintenance of a genetic polymorphism at the enzyme locus lactate dehydrogenase B (LDH-B) in the pool frog, Rana lessonae. We raised tadpoles individually in a factorial experiment in which we manipulated temperature, food level, and food quality. The only statistically significant difference among LDH-B genotypes was in growth rate, with the heterozygote performing best. Although the difference was not significant, heterozygotes also tended to perform best for size at metamorphosis. However, heterozygotes did not perform best in terms of other traits (age at metamorphosis and rates of survival and metamorphosis), where differences among LDH-B genotypes were also not significant. The size of the effect of LDH-B genotype depended on the environment, which suggests that the locus may be selectively neutral in some environments. There were no genotype-environment interactions in the sense that reaction norms along environmental gradients did not cross. When we raised tadpoles in groups, e/e homozygotes had a significantly higher body mass and developed at the significantly highest rate. In addition, there may be a trade-off between larval and adult performance: adult frogs show a different ranking in performance of LDH-B genotypes than tadpoles do. These results suggest that this genetic polymorphism is maintained through heterozygote advantage, possibly in conjunction with antagonistic pleiotropy.


2021 ◽  
Author(s):  
Fonti Kar ◽  
Shinichi Nakagawa ◽  
Daniel W.A. Noble

Phenotypic plasticity is an important mechanism that allows populations to adjust to changing environments. Plastic responses induced by early life experiences can have lasting impacts on how individuals respond to environmental variation later in life (i.e., reversible plasticity). Developmental environments can also influence repeatability of plastic responses thereby altering the capacity for reaction norms to respond to selection. Here, we compared metabolic thermal reaction norms in lizards (Lampropholis delicata) that were incubated at two developmental temperatures (ncold = 26, nhot = 25). We repeatedly measured individual reaction norms across six acute temperatures 10 times over ~3.5 months (nobs = 3,818) to estimate the repeatability of average metabolic rate (intercept) and thermal plasticity (slope). The intercept and the slope of the population-level thermal reaction norm did not change with developmental temperatures. Repeatability of average metabolic rate was, on average, 10% lower in hot incubated lizards and was stable across acute temperatures. The slope of the reaction norm was moderately repeatable (R = 0.44, 95% CI = 0.035 – 0.93) suggesting that individual metabolic rate changed consistently with acute temperature, although credible intervals were quite broad. Importantly, reaction norm repeatability did not depend on early developmental temperature. Our work implies that thermal plasticity has the capacity to evolve, despite there being less consistent variation in metabolic rate under hot environments. This capacity for thermal plasticity to evolve will be increasingly more important for terrestrial ectotherms living in changing climate.


2014 ◽  
Vol 59 (5) ◽  
pp. 1570-1580 ◽  
Author(s):  
Yong Zhang ◽  
Regina Klapper ◽  
Kai T. Lohbeck ◽  
Lennart T. Bach ◽  
Kai G. Schulz ◽  
...  

2010 ◽  
Vol 67 (3) ◽  
pp. 498-510 ◽  
Author(s):  
Craig F. Purchase ◽  
Ian A.E. Butts ◽  
Alexandre Alonso-Fernández ◽  
Edward A. Trippel

Phenotypic plasticity occurs when a genotype produces variable phenotypes under different environments; the shapes of such responses are known as norms of reaction. The genetic scale at which reaction norms can be determined is restricted by the experimental unit that can be exposed to variable environments. This has limited their description beyond the family level in higher organisms, thus hindering our understanding of differences in plasticity at the scale of the individual. Using a three-year common-garden experiment, we quantify reaction norms in sperm performance of individual genotypes within different families of Atlantic cod ( Gadus morhua ). Cod sperm showed phenotypic plasticity in swimming performance across temperatures (3, 6, 11, and 21 °C), but the pattern of the response depended upon how long sperm had been swimming (30, 60, 120, or 180 s), i.e., plasticity in plasticity. Sperm generally swam fastest at intermediate temperatures when first assessed at 30 s after activation. However, a significant genotype × environment interaction was present, indicating inter-individual differences in phenotypic plasticity. To our knowledge, this is the first study to describe variable sperm performance across environmental conditions as a reaction norm. The results have potential theoretical, conservation, and aquaculture implications.


2020 ◽  
Vol 139 ◽  
pp. 93-102 ◽  
Author(s):  
MF Van Bressem ◽  
P Duignan ◽  
JA Raga ◽  
K Van Waerebeek ◽  
N Fraijia-Fernández ◽  
...  

Crassicauda spp. (Nematoda) infest the cranial sinuses of several odontocetes, causing diagnostic trabecular osteolytic lesions. We examined skulls of 77 Indian Ocean humpback dolphins Sousa plumbea and 69 Indo-Pacific bottlenose dolphins Tursiops aduncus, caught in bather-protecting nets off KwaZulu-Natal (KZN) from 1970-2017, and skulls of 6 S. plumbea stranded along the southern Cape coast in South Africa from 1963-2002. Prevalence of cranial crassicaudiasis was evaluated according to sex and cranial maturity. Overall, prevalence in S. plumbea and T. aduncus taken off KZN was 13 and 31.9%, respectively. Parasitosis variably affected 1 or more cranial bones (frontal, pterygoid, maxillary and sphenoid). No significant difference was found by gender for either species, allowing sexes to be pooled. However, there was a significant difference in lesion prevalence by age, with immature T. aduncus 4.6 times more likely affected than adults, while for S. plumbea, the difference was 6.5-fold. As severe osteolytic lesions are unlikely to heal without trace, we propose that infection is more likely to have a fatal outcome for immature dolphins, possibly because of incomplete bone development, lower immune competence in clearing parasites or an over-exuberant inflammatory response in concert with parasitic enzymatic erosion. Cranial osteolysis was not observed in mature males (18 S. plumbea, 21 T. aduncus), suggesting potential cohort-linked immune-mediated resistance to infestation. Crassicauda spp. may play a role in the natural mortality of S. plumbea and T. aduncus, but the pathogenesis and population level impact remain unknown.


2018 ◽  
Vol 1 (2) ◽  
pp. 114
Author(s):  
Wahdaniah Wahdaniah ◽  
Sri Tumpuk

Abstract: Routine blood examination is the earliest blood test or screening test to determine the diagnosis of an abnormality. Blood easily froze if it is outside the body and can be prevented by the addition of anticoagulants, one of which Ethylene Diamine Tetra Acetate (EDTA). Currently available vacuum tubes containing EDTA anticoagulants in the form of K2EDTA and K3EDTA. K3EDTA is usually a salt that has better stability than other EDTA salts because it shows a pH approaching a blood pH of about 6.4. The purpose of this research is to know the difference of erythrocyte index results include MCH, MCV and MCHC using K3EDTA anticoagulant with K2EDTA. This research is a cross sectional design. This study used venous blood samples mixed with K2EDTA anticoagulant and venous blood mixed with K3EDTA anticoagulants, each of 30 samples. Data were collected and analyzed using paired different test. Based on data analysis that has been done on MCH examination, p value <0,05 then there is a significant difference between samples with K3EDTA anticoagulant with K2EDTA to erythrocyte index value. Then on the examination of MCV and MCHC obtained p value <0.05 then there is no significant difference between samples with K3EDTA anticoagulant with K2EDTA to erythrocyte index value.Abstrak: Pemeriksaan darah rutin merupakan pemeriksaan darah yang paling awal atau screening test untuk mengetahui diagnosis suatu kelainan. Darah mudah membeku jika berada diluar tubuh dan bisa dicegah dengan penambahan antikoagulan, salah satunya Ethylene Diamine Tetra Acetate (EDTA). Dewasa ini telah tersedia tabung vakum yang sudah berisi antikoagulan EDTA dalam bentuk  K2EDTA dan  K3EDTA. K3EDTA  biasanya berupa garam yang mempunyai stabilitas yang lebih baik dari garam EDTA yang lain karena menunjukkan pH yang mendekati pH darah yaitu sekitar 6,4. Tujuan dari penelitian ini adalah untuk mengetahui perbedaan hasil indeks eritrosit meliputi MCH, MCV dan MCHC menggunakan antikoagulan K3EDTA dengan K2EDTA. Penelitian ini merupakan penelitian dengan desain cross sectional. Penelitian ini menggunakan sampel darah vena yang dicampur dengan antikoagulan K2EDTA dan darah vena yang dicampur dengan antikoagulan K3EDTA, masing-masing sebanyak 30 sampel. Data dikumpulkan dan dianalisis menggunakan uji beda berpasangan. Berdasarkan analisis data yang telah dilakukan pada pemeriksaan MCH didapatkan nilai p < 0,05 maka ada perbedaan yang signifikan antara sampel dengan antikoagulan K3EDTA dengan K2EDTA terhadap nilai indeks eritrosit. Kemudian pada pemeriksaan MCV dan MCHC didapatkan nilai p < 0,05 maka tidak ada perbedaan yang signifikan antara sampel dengan antikoagulan K3EDTA dengan K2EDTA terhadap nilai indeks eritrosit.


Sign in / Sign up

Export Citation Format

Share Document