scholarly journals Participation of Amyloid and Tau Protein in Neuronal Death and Neurodegeneration after Brain Ischemia

2020 ◽  
Vol 21 (13) ◽  
pp. 4599 ◽  
Author(s):  
Ryszard Pluta ◽  
Marzena Ułamek-Kozioł ◽  
Sławomir Januszewski ◽  
Stanisław J. Czuczwar

Current evidence indicates that postischemic brain injury is associated with the accumulation of folding proteins, such as amyloid and tau protein, in the intra- and extracellular spaces of neuronal cells. In this review, we summarize protein changes associated with Alzheimer’s disease and their gene expression (amyloid protein precursor and tau protein) after brain ischemia, and their roles in the postischemic period. Recent advances in understanding the postischemic mechanisms in development of neurodegeneration have revealed dysregulation of amyloid protein precursor, α-, β- and γ-secretase and tau protein genes. Reduced expression of the α-secretase gene after brain ischemia with recirculation causes neuronal cells to be less resistant to injury. We present the latest data that Alzheimer’s disease-related proteins and their genes play a crucial role in postischemic neurodegeneration. Understanding the underlying processes of linking Alzheimer’s disease-related proteins and their genes in development of postischemic neurodegeneration will provide the most significant goals to date for therapeutic development.

2021 ◽  
Vol 22 (5) ◽  
pp. 2460
Author(s):  
Ryszard Pluta ◽  
Liang Ouyang ◽  
Sławomir Januszewski ◽  
Yang Li ◽  
Stanisław J. Czuczwar

Recent evidence suggests that amyloid and tau protein are of vital importance in post-ischemic death of CA1 pyramidal neurons of the hippocampus. In this review, we summarize protein alterations associated with Alzheimer's disease and their gene expression (amyloid protein precursor and tau protein) after cerebral ischemia, as well as their roles in post-ischemic hippocampus neurodegeneration. In recent years, multiple studies aimed to elucidate the post-ischemic processes in the development of hippocampus neurodegeneration. Their findings have revealed the dysregulation of genes for amyloid protein precursor, β-secretase, presenilin 1 and 2, tau protein, autophagy, mitophagy, and apoptosis identical in nature to Alzheimer's disease. Herein, we present the latest data showing that amyloid and tau protein associated with Alzheimer's disease and their genes play a key role in post-ischemic neurodegeneration of the hippocampus with subsequent development of dementia. Therefore, understanding the underlying process for the development of post-ischemic CA1 area neurodegeneration in the hippocampus in conjunction with Alzheimer's disease-related proteins and genes will provide the most important therapeutic development goals to date.


2015 ◽  
Vol 11 (7S_Part_14) ◽  
pp. P651-P652
Author(s):  
Eduardo de SouzaS. Nicolau ◽  
Ana Paula Mendes Silva ◽  
Kenia Kelly Fiaux do Nascimento ◽  
Kelly Silva Pereira ◽  
Gizele Ribeiro dos Santos ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3186 ◽  
Author(s):  
Ryszard Pluta ◽  
Marzena Ułamek-Kozioł ◽  
Sławomir Januszewski ◽  
Stanisław J. Czuczwar

Post-ischemic brain damage is associated with the deposition of folding proteins such as the amyloid and tau protein in the intra- and extracellular spaces of brain tissue. In this review, we summarize the protein changes associated with Alzheimer’s disease and their gene expression (amyloid protein precursor and tau protein) after ischemia-reperfusion brain injury and their role in the post-ischemic injury. Recent advances in understanding the post-ischemic neuropathology have revealed dysregulation of amyloid protein precursor, α-secretase, β-secretase, presenilin 1 and 2, and tau protein genes after ischemic brain injury. However, reduced expression of the α-secretase in post-ischemic brain causes neurons to be less resistant to injury. In this review, we present the latest evidence that proteins associated with Alzheimer’s disease and their genes play a key role in progressive brain damage due to ischemia and reperfusion, and that an ischemic episode is an essential and leading supplier of proteins and genes associated with Alzheimer’s disease in post-ischemic brain. Understanding the underlying processes of linking Alzheimer’s disease-related proteins and their genes in post-ischemic brain injury with the risk of developing Alzheimer’s disease will provide the most significant goals for therapeutic development to date.


1994 ◽  
Vol 36 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Steven L. Wagner ◽  
Elaine R. Peskind ◽  
David Nochlin ◽  
Sally Provow ◽  
Jeffrey S. Farrow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document