polypeptide folding
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 2)

H-INDEX

21
(FIVE YEARS 1)

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1994 ◽  
Author(s):  
Philip J. Robinson ◽  
Neil J. Bulleid

Disulfide bonds are an abundant feature of proteins across all domains of life that are important for structure, stability, and function. In eukaryotic cells, a major site of disulfide bond formation is the endoplasmic reticulum (ER). How cysteines correctly pair during polypeptide folding to form the native disulfide bond pattern is a complex problem that is not fully understood. In this paper, the evidence for different folding mechanisms involved in ER-localised disulfide bond formation is reviewed with emphasis on events that occur during ER entry. Disulfide formation in nascent polypeptides is discussed with focus on (i) its mechanistic relationship with conformational folding, (ii) evidence for its occurrence at the co-translational stage during ER entry, and (iii) the role of protein disulfide isomerase (PDI) family members. This review highlights the complex array of cellular processes that influence disulfide bond formation and identifies key questions that need to be addressed to further understand this fundamental process.


2020 ◽  
Author(s):  
Marina Kithil ◽  
Anja Jeannine Engel ◽  
Markus Langhans ◽  
Oliver Rauh ◽  
Matea Cartolano ◽  
...  

AbstractThe choice of codons can influence local translation kinetics during protein synthesis. The question of whether the modulation of polypeptide folding and binding to chaperons influences sorting of nascent membrane proteins remains unclear. Here, we use two similar K+ channels as model systems to examine the impact of codon choice on protein sorting. By monitoring transient expression of GFP tagged proteins in mammalian cells we find that targeting of one channel to the secretory pathway is insensitive to codon optimization. In contrast, sorting of the second channel to the mitochondria is very sensitive to codon choice. The protein with an identical amino acid sequence is sorted in a codon and cell cycle dependent manner either to mitochondria or the secretory pathway. The data establish that a gene with either rare or frequent codons serves together with a cell-state depending decoding mechanism as a secondary code for sorting intracellular proteins.


2018 ◽  
Vol 96 (10) ◽  
pp. 912-921
Author(s):  
John Justine S. Villar ◽  
Logine Negm ◽  
Anita Rágyanszki ◽  
David H. Setiadi ◽  
Adrian Roy L. Valdez ◽  
...  

Finding a relationship on how a three-dimensional protein folds from its linear amino acid chain gets more complex with increasing chain length, so working on a smaller peptide conformational problem can provide initial ideas on what are the main molecular forces and how these influence the folding process. Following the study of conformations of amino acid units entering the proteins to understand the secondary structure of small peptides, this paper proposes mathematical models for the several two-rotor cross-sections of the five-dimensional N-acetyl-glycyl-glycine-N′-methylamide potential energy hypersurface (PEHS). These cross-sections are extracted along the first glycine subunit, with its coordinates fixed at the five energy minima of the glycine diamide. The resulting mathematical models yield an average RMSE of 1.36 kJ mol−1 and an average R2 of 0.9923 with respect to energy values obtained from DFT calculations. The minima geometries obtained from these models are also in good agreement with DFT-optimized energy minima conformers. An important aspect of this study also tackles the relationship between the PEHS of the glycyl-glycine diamide and its glycine subunits. It has been observed that there are deviations up to 28.35 kJ mol−1 and 29.52 kJ mol−1 between the PEHS cross-sections along γL and γD conformations, respectively, in the first glycine subunit. This may suggest that there are significant backbone–backbone intermolecular forces acting on the dipeptide. The abovementioned findings can help in developing more complex mathematical models for polypeptide folding from amino acid subunits.


2017 ◽  
Author(s):  
Ron Geller ◽  
Sebastian Pechmann ◽  
Ashley Acevedo ◽  
Raul Andino ◽  
Judith Frydman

AbstractAcquisition of mutations is central to evolution but the detrimental effects of most mutations on protein folding and stability limit protein evolvability. Molecular chaperones, which suppress aggregation and facilitate polypeptide folding, are proposed to promote sequence diversification by buffering destabilizing mutations. However, whether and how chaperones directly control protein evolution remains poorly understood. Here, we examine the effect of reducing the activity of the key eukaryotic chaperone Hsp90 on poliovirus evolution. Contrary to predictions of a buffering model, inhibiting Hsp90 increases population sequence diversity and promotes accumulation of mutations reducing protein stability. Explaining this counterintuitive observation, we find that Hsp90 offsets the evolutionary tradeoff between protein stability and aggregation. Lower chaperone levels favor sequence variants of reduced hydrophobicity, thus decreasing protein aggregation propensity but at a cost to protein stability. Notably, reducing Hsp90 activity also promotes clusters of codon-deoptimized synonymous mutations at inter-domain boundaries, likely to promote local ribosomal slowdown to facilitate cotranslational domain folding. Our results reveal how a chaperone can shape the sequence landscape at both the protein and RNA levels to harmonize the competing constraints posed by protein stability, aggregation propensity and translation rate on successful protein biogenesis.


2015 ◽  
Vol 6 (4) ◽  
pp. 269-284 ◽  
Author(s):  
Myra E. Conway ◽  
Christopher Lee

AbstractModification of reactive cysteine residues plays an integral role in redox-regulated reactions. Oxidation of thiolate anions to sulphenic acid can result in disulphide bond formation, or overoxidation to sulphonic acid, representing reversible and irreversible endpoints of cysteine oxidation, respectively. The antioxidant systems of the cell, including the thioredoxin and glutaredoxin systems, aim to prevent these higher and irreversible oxidation states. This is important as these redox transitions have numerous roles in regulating the structure/function relationship of proteins. Proteins with redox-active switches as described for peroxiredoxin (Prx) and protein disulphide isomerase (PDI) can undergo dynamic structural rearrangement resulting in a gain of function. For Prx, transition from cysteine sulphenic acid to sulphinic acid is described as an adaptive response during increased cellular stress causing Prx to form higher molecular weight aggregates, switching its role from antioxidant to molecular chaperone. Evidence in support of PDI as a redox-regulated chaperone is also gaining impetus, where oxidation of the redox-active CXXC regions causes a structural change, exposing its hydrophobic region, facilitating polypeptide folding. In this review, we will focus on these two chaperones that are directly regulated through thiol-disulphide exchange and detail how these redox-induced switches allow for dual activity. Moreover, we will introduce a new role for a metabolic protein, the branched-chain aminotransferase, and discuss how it shares common mechanistic features with these well-documented chaperones. Together, the physiological importance of the redox regulation of these proteins under pathological conditions such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis will be discussed to illustrate the impact and importance of correct folding and chaperone-mediated activity.


2015 ◽  
Vol 51 (69) ◽  
pp. 13397-13399 ◽  
Author(s):  
Mothukuri Ganesh Kumar ◽  
Sushil N. Benke ◽  
K. Muruga Poopathi Raja ◽  
Hosahudya N. Gopi

Utilization of conjugated double bonds to engineer the novel folded miniature β-meander type structures, transformation of miniature β-meanders into 10/12-helices using catalytic hydrogenation, their solution and single crystal conformations are reported.


2013 ◽  
Vol 20 (7) ◽  
pp. 843-850 ◽  
Author(s):  
Arzu Sandikci ◽  
Felix Gloge ◽  
Michael Martinez ◽  
Matthias P Mayer ◽  
Rebecca Wade ◽  
...  
Keyword(s):  

2012 ◽  
Vol 48 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Anja Hoffmann ◽  
Annemarie H. Becker ◽  
Beate Zachmann-Brand ◽  
Elke Deuerling ◽  
Bernd Bukau ◽  
...  

Nano Letters ◽  
2011 ◽  
Vol 11 (12) ◽  
pp. 5564-5573 ◽  
Author(s):  
Daniel Aili ◽  
Piotr Gryko ◽  
Borja Sepulveda ◽  
John A. G. Dick ◽  
Nigel Kirby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document