Flow Response of an Industrial Gas Turbine Combustor To Acoustic Forcing Extracted From Unforced Data

2021 ◽  
Author(s):  
Jan Paul Beuth ◽  
Jakob G. R. von Saldern ◽  
Thomas Ludwig Kaiser ◽  
Thoralf G. Reichel ◽  
Christian Oliver Paschereit ◽  
...  

Abstract Gas turbine combustors are commonly operated with lean premix flames, allowing for high efficiencies and low emissions. These operating conditions are susceptible to thermoacoustic pulsations, originating from acoustic-flame coupling. To reveal this coupling, experiments or simulations of acoustically forced combustion systems are necessary, which are very challenging for real-scale applications. In this work we investigate the possibility to determine the flame response to acoustic forcing from snapshots of the unforced flow. This approach is based on three central hypothesis: first, the flame response is driven by flow fluctuations, second, these flow fluctuations are dominated by coherent structures driven by hydrodynamic instabilities, and third, these instabilities are driven by stochastic forcing of the background turbulence. As a consequence the dynamics in the natural flow should be low-rank and very similar to those of the acoustically forced system. In this work, the methodology is applied to experimental data of an industry-scale swirl combustor. A resolvent analysis is conducted based on the linearized Navier-Stokes equations to assure analytically the low-rank behavior of the flow dynamics. Then, these dynamics are extracted from flow snapshots using spectral proper orthogonal decomposition (SPOD). The extended SPOD is applied to determine the heat release rate fluctuations that are correlated with the flow dynamics. The low-rank flow and flame dynamics determined from the analytic and data-driven approach are then compared to the flow response determined from a classic phase average of the acoustically forced flow, which allow the research hypothesis to be evaluated. It is concluded that for the present combustor, the flow and flame dynamics are low-rank for a wider frequency range and the response to harmonic forcing can be determined quite accurately from unforced snapshots. The methodology further allows to isolate the frequency range where the flame response is predominantly driven by hydrodynamic instabilites.

Author(s):  
Thomas Ludwig Kaiser ◽  
Lutz Lesshafft ◽  
Kilian Oberleithner

Abstract Resolvent analysis is applied to a nonreacting and a reacting swirled jet flow. Time-averaged flows as input for the resolvent analysis and validation for the results of the resolvent analysis are obtained by experiments. We show that in the nonreacting (cold) flow case, the resolvent analysis is capable of predicting the hydrodynamic response to upstream harmonic acoustic forcing if the flow shows low-rank behavior. This is the case for low and moderate acoustic forcing amplitudes. Even for very strong acoustic velocity amplitudes that are of the same order of magnitude as the flow velocity, the resolvent analysis still provides reasonable results. The method also yields very good results for the reacting flow in terms of velocity fluctuation and heat release response to the acoustic forcing. This confirms the idea that the resolvent method could be applied to estimate the flame transfer function (FTF) based on the mean flow and flame.


Author(s):  
Alessandro Innocenti ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Matteo Cerutti

A thermo-acoustic stability of a full-annular lean partially-premixed heavy-duty gas turbine combustor is carried out in the present paper. A sensitivity analysis is performed, varying the flame temperature for two operating conditions. The complex interaction between the system acoustics and the turbulent flame is studied in Ansys Fluent, using Unsteady-RANS simulations with Flamelet-Generated Manifolds combustion model. Perturbations are introduced in the system imposing a broadband excitation as inlet boundary condition. The flame response is then computed exploiting system identification techniques. The identified flame transfer functions are compared each other and the results analysed in order to give more physical insight on the coupling mechanisms responsible for the flame dynamic response. The effect of fuel mass flow fluctuations is then introduced as further driving input, describing the flame as a Multi-Input Single-Output system. Further in-depth studies are carried out on pilot flames aiming at replicating the dynamic response of the real flame and understanding the driving mechanism of thermo-acoustic instability onset as well. The obtained results are implemented into a finite element model of the combustor, realized in COMSOL Multiphysics, to analyse the system stability. Numerical model affordability has been assessed through comparisons with results from full-annular combustor experimental campaign carried out by GE Oil & Gas since the early phases of the design and development of a heavy-duty gas turbine. This allowed the discussion of the model ability to describe the stability properties of the combustor and to catch the instabilities onset as detected experimentally. Valuable indications for future design optimization were also identified thanks to the obtained results.


Author(s):  
Jacqueline O’Connor ◽  
Nicholas A. Worth ◽  
James R. Dawson

Azimuthal instabilities are prevalent in annular gas turbine combustors; these instabilities have been observed in industrial systems and research combustors, and have been predicted in simulations. Recent experiments in a model annular combustor have resulted in self-excited, circumferential instability modes at a variety of operating conditions. The instability mode “drifts” between standing and spinning waves, both clockwise and counter-clockwise rotating, during the course of operation. In this study, we analyze the flame response to standing wave modes by comparing the flame dynamics in a self-excited annular combustor with the flame dynamics in a single nozzle, transverse forcing rig. In the model annular combustor, differences in flame fluctuation have been observed at the node and anti-node of the standing pressure wave. Flames at the pressure anti-node display symmetric fluctuations, while flames at the pressure node execute asymmetric, flapping motions. This flame motion has been measured using both OH* chemiluminescence and planar laser induced fluorescence of OH radicals. To better understand these flame dynamics, the time-resolved velocity fields from a transverse forcing experiment are presented, and show that such a configuration can capture the symmetric and asymmetric disturbance fields at similar frequency ranges. Using high-speed PIV in multiple planes of the flow, it has been found that symmetric ring vortex shedding is driven by pressure fluctuations at the pressure anti-node whereas helical vortex disturbances drive the asymmetric flame disturbances at pressure nodes. By comparing the results of these two experiments, we are able to more fully understand flame dynamics during self-excited combustion instability in annular combustion chambers.


Author(s):  
Thomas Ludwig Kaiser ◽  
Lutz Lesshafft ◽  
Kilian Oberleithner

Abstract Resolvent analysis is applied to a non-reacting and a reacting swirled jet flow. Time-averaged flows as input for the resolvent analysis and validation for the results of the resolvent analysis are obtained by experiments. We show that in the non-reacting (cold) flow case, the resolvent analysis is capable of predicting the hydrodynamic response to upstream harmonic acoustic forcing if the flow shows low-rank behavior. This is the case for low and moderate acoustic forcing amplitudes. Even for very strong acoustic velocity amplitudes, that are of the same order of magnitude as the flow velocity, the resolvent analysis still provides reasonable results. The method also yields very good results for the reacting flow in terms of velocity fluctuation and heat release response to the acoustic forcing. This confirms the idea that the resolvent method could be applied to estimate the Flame Transfer Function based on the mean flow and flame.


Author(s):  
A. Z. A. Mazlan ◽  
M. H. A. Satar ◽  
M. H. Hamdan ◽  
M. S. Md. Isa ◽  
S. Man ◽  
...  

The automotive heating and ventilating air condition (HVAC) system, when vibrating, can generate various types of noises such as humming, hissing, clicking and air-rushes. These noises can be characterised to determine their root causes. In this study, the humming-type noise is taken into consideration whereby the noise and vibration characteristics are measured from various HVAC components such as power steering pump, compressor and air conditional pipe. Four types of measurement sensors were used in this study - tachometer for rpm tracking; accelerometer for the vibration microphone for the noise; and sound camera for the visualization measurement. Two types of operating conditions were taken into consideration - they were “idle” (850 rpm) and “running” (850-1400 rpm) conditions. A constant blower speed was applied for both conditions. The result shows that the humming noises can be determined at the frequency range of 300-350 Hz and 150-250 Hz for both idle and running conditions, respectively. The vibration of the power steering pump shows the worst acceleration of 1.8 m/s2 at the frequency range of 150-250 Hz, compared to the compressor and air conditional pipe. This result was validated with the 3D colour order and sound camera analyses, in which the humming noise colour mapping shows dominance in this frequency range.  


Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 389
Author(s):  
Jinfu Liu ◽  
Zhenhua Long ◽  
Mingliang Bai ◽  
Linhai Zhu ◽  
Daren Yu

As one of the core components of gas turbines, the combustion system operates in a high-temperature and high-pressure adverse environment, which makes it extremely prone to faults and catastrophic accidents. Therefore, it is necessary to monitor the combustion system to detect in a timely way whether its performance has deteriorated, to improve the safety and economy of gas turbine operation. However, the combustor outlet temperature is so high that conventional sensors cannot work in such a harsh environment for a long time. In practical application, temperature thermocouples distributed at the turbine outlet are used to monitor the exhaust gas temperature (EGT) to indirectly monitor the performance of the combustion system, but, the EGT is not only affected by faults but also influenced by many interference factors, such as ambient conditions, operating conditions, rotation and mixing of uneven hot gas, performance degradation of compressor, etc., which will reduce the sensitivity and reliability of fault detection. For this reason, many scholars have devoted themselves to the research of combustion system fault detection and proposed many excellent methods. However, few studies have compared these methods. This paper will introduce the main methods of combustion system fault detection and select current mainstream methods for analysis. And a circumferential temperature distribution model of gas turbine is established to simulate the EGT profile when a fault is coupled with interference factors, then use the simulation data to compare the detection results of selected methods. Besides, the comparison results are verified by the actual operation data of a gas turbine. Finally, through comparative research and mechanism analysis, the study points out a more suitable method for gas turbine combustion system fault detection and proposes possible development directions.


Author(s):  
I. V. Novosselov ◽  
P. C. Malte ◽  
S. Yuan ◽  
R. Srinivasan ◽  
J. C. Y. Lee

A chemical reactor network (CRN) is developed and applied to a dry low emissions (DLE) industrial gas turbine combustor with the purpose of predicting exhaust emissions. The development of the CRN model is guided by reacting flow computational fluid dynamics (CFD) using the University of Washington (UW) eight-step global mechanism. The network consists of 31 chemical reactor elements representing the different flow and reaction zones of the combustor. The CRN is exercised for full load operating conditions with variable pilot flows ranging from 35% to 200% of the neutral pilot. The NOpilot. The NOx and the CO emissions are predicted using the full GRI 3.0 chemical kinetic mechanism in the CRN. The CRN results closely match the actual engine test rig emissions output. Additional work is ongoing and the results from this ongoing research will be presented in future publications.


Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


Sign in / Sign up

Export Citation Format

Share Document