Blow-off characteristics of a premixed methane/air flame response to acoustic disturbances in a longitudinal combustor

2021 ◽  
pp. 107003
Author(s):  
Yongchao Sun ◽  
Mingbo Sun ◽  
Dan Zhao ◽  
Yong Chen ◽  
Guangwei Ma ◽  
...  
Akustika ◽  
2021 ◽  
pp. 70-75
Author(s):  
Vladimir Pinchuk ◽  
Anton Pinchuk

Within the framework of the conceptual approach, taking into account the previously unknown, first identified by the authors features of the conditions of the internal energy equilibrium of material media (between their different physical nature energy states), the real contribution of acoustic disturbances experienced by media in the conditions of existence into ensuring of their and of the material world as a whole mutational and evolutionary transformations is taken into account and confirmed.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jianqiang Shi ◽  
Xiaojun Tang ◽  
Zhenqing Wang ◽  
Mingfang Shi ◽  
Wei Zhao

Direct numerical simulation (DNS) of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer.


2018 ◽  
Vol 198 ◽  
pp. 249-259 ◽  
Author(s):  
Kae Ken Foo ◽  
Zhiwei Sun ◽  
Paul R. Medwell ◽  
Zeyad T. Alwahabi ◽  
Graham J. Nathan ◽  
...  

Author(s):  
Uyi Idahosa ◽  
Saptarshi Basu ◽  
Ankur Miglani

This paper reports an experimental investigation of dynamic response of nonpremixed atmospheric swirling flames subjected to external, longitudinal acoustic excitation. Acoustic perturbations of varying frequencies (fp = 0–315 Hz) and velocity amplitudes (0.03 ≤ u′/Uavg ≤ 0.30) are imposed on the flames with various swirl intensities (S = 0.09 and 0.34). Flame dynamics at these swirl levels are studied for both constant and time-dependent fuel flow rate configurations. Heat release rates are quantified using a photomultiplier (PMT) and simultaneously imaged with a phase-locked CCD camera. The PMT and CCD camera are fitted with 430 nm ±10 nm band pass filters for CH* chemiluminescence intensity measurements. Flame transfer functions and continuous wavelet transforms (CWT) of heat release rate oscillations are used in order to understand the flame response at various burner swirl intensity and fuel flow rate settings. In addition, the natural modes of mixing and reaction processes are examined using the magnitude squared coherence analysis between major flame dynamics parameters. A low-pass filter characteristic is obtained with highly responsive flames below forcing frequencies of 200 Hz while the most significant flame response is observed at 105 Hz forcing mode. High strain rates induced in the flame sheet are observed to cause periodic extinction at localized regions of the flame sheet. Low swirl flames at lean fuel flow rates exhibit significant localized extinction and re-ignition of the flame sheet in the absence of acoustic forcing. However, pulsed flames exhibit increased resistance to straining due to the constrained inner recirculation zones (IRZ) resulting from acoustic perturbations that are transmitted by the co-flowing air. Wavelet spectra also show prominence of low frequency heat release rate oscillations for leaner (C2) flame configurations. For the time-dependent fuel flow rate flames, higher un-mixedness levels at lower swirl intensity is observed to induce periodic re-ignition as the flame approaches extinction. Increased swirl is observed to extend the time-to-extinction for both pulsed and unpulsed flame configurations under time-dependent fuel flow rate conditions.


2017 ◽  
Vol 10 (1) ◽  
pp. 72-85
Author(s):  
Ze-tian Ren ◽  
Su-hui Li ◽  
Min Zhu

This paper aims at developing a computationally inexpensive method to investigate the premixed flame instabilities. The kinematic G-equation is combined with a two-dimensional discrete vortex method, and the conformal mapping is applied to make calculations for complicated geometries more efficiently. The vortex dynamics and flame response to harmonic velocity forcing of an anchored ducted V-flame are investigated, and the effects of harmonic forcing, Reynolds number, and bluff body geometry are examined. Results show that the vortex structures, flow instability, and flame response are closely coupled with each other. The unsteady vortex structures generate instabilities at the flame base, and the convection of the flame wrinkles then influences the flame dynamics downstream. The flame heat release fluctuates with larger amplitude under low-frequency forcings, while the phase of the flame transfer function is quasi-linear with increasing forcing frequency. Both higher inflow velocity and sharper bluff body corners can result in more unsteady large-scale vortex structures and hence influence the flame responses.


Sign in / Sign up

Export Citation Format

Share Document